

SolarRoof

Code-Compliant Planning and Installation Guide V 2.0 (New Zealand) Complying with AS/NZS 1170.2-2021

Disclaimer

The document you have accessed is provided for general informational purposes only. While we strive to ensure the accuracy and relevance of our documents, we acknowledge that search engines may occasionally return outdated or incorrect results. Therefore, we strongly recommend that customers refer directly to the official Clenergy website for the most up-to-date and country-specific documents.

This document should only be used as a last resort if no country-specific document is available on the respective Clenergy website. If the document does not comply with the content or standards of national legal documents, the national legal documents shall take precedence. Clenergy bears no responsibility for any inaccuracies, errors, or discrepancies that may arise from the use of this document in lieu of official, country-specific guidance and does not warrant the up-to-dateness, correctness, completeness, or quality of the information provided.

For the latest and most accurate information, please visit the Clenergy website corresponding to your country of residence or installation. If you have any questions or concerns regarding the information provided herein, please contact Clenergy at <u>communications@clenergy.com</u>.

Contents

List of contents Introduction 02 03 - 07 Planning Determine the wind region of your installation site 03 - 05 Determine the Terrain Category 06 Verify Atmospheric Corrosivity Zone of Installation Site 06 Determine Building Dimension 06 Determine the Installation Area of Roof 07 Verify Rafter/Purlin Properties of Building 07 Determine the Maximum Rail Support Spacing 07 Verify Maximum Rail End Overhang 07 Acquire PV Modules Clamping Zone Information 07 **Tools and Components** 08 - 09 Tools 08 08 - 09 Components 10 - 11 System Overview Overview of PVezRack® SolarRoof 10 Precautions during Stainless Steel Fastener Installation 11 General installation instructions 11 Safe Torques 11 Installation Instructions 12 - 18 Installation Dimensions 12 Tile Interface Installation 13 Rail Installation 14 PV Module Installation 15 Tin Interface Installation 15 - 17 Side Channel Cover for Cutter-Rail Installation (optional) 18 Hanger Bolt Installation 19 - 22 Hanger Bolt for Tile Roof Installation 19 Hanger Bolt for Tin Roof Installationl 20 - 22 **Engineering Certificate** 23 **Certificate User Guideline** 46

Introduction

The Clenergy PVezRack® SolarRoof has been developed as a universal PV-mounting system for roof-mounting on pitched and flat roofs. The use of patented aluminium base rails, Z-Module technology and telescopic mounting technology eliminates custom cutting and enables fast installation.

Please review this manual thoroughly before installing PVezRack® SolarRoof. This manual provides:

1) Supporting documentation for building permit applications relating to PVezRack® SolarRoof Universal PV Module Mounting System,

2) Planning and installation instructions.

The PVezRack[®] SolarRoof parts, when installed in accordance with this guide, will be structurally sound and will meet the AS/NZS 1170.2 - 2021 standard. During installation, and especially when working on the roof, please comply with the appropriate Occupational Health and Safety regulations. Please also pay attention to any other relevant State or Federal regulations. Please check that you are using the latest version of the Installation Manual, which you can do by contacting Clenergy Australia via email on tech@clenergy.com.au, or contacting your local distributor in New Zealand.

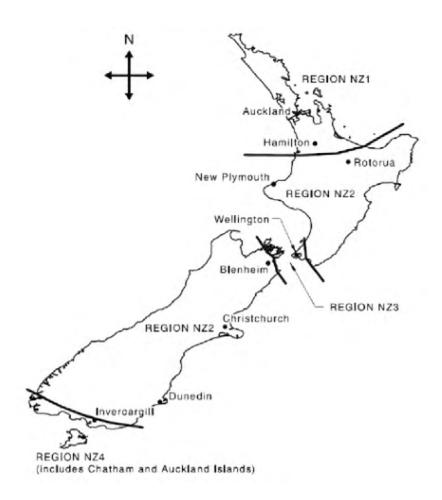
The installer is solely responsible for:

- Complying with all applicable local or national building codes, including any updates that may supersede this manual;
- Ensuring that PVezRack[®] and other products are appropriate for the particular installation and the installation environment;

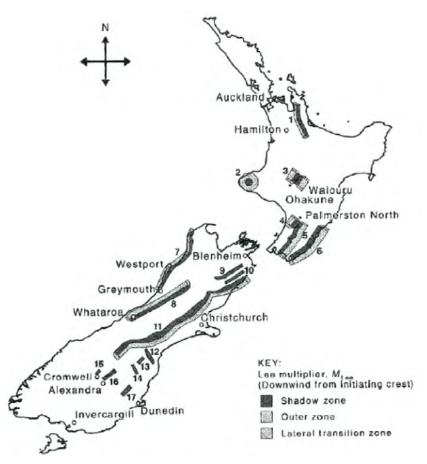
- Using only PVezRack[®] parts and installer-supplied parts as specified by PVezRack[®] project plan (substitution of parts may void the warranty and invalidate the letter of certification);
- Recycling: Recycle according to the local relative statute;
- Removal: Reverse installation process;
- Ensuring that there are no less than two professionals working on panel installation;
- Ensuring the installation of related electrical equipment is performed by licenced electricians;
- Ensuring safe installation of all electrical aspects of the PV array, This includes adequate earth bonding of the PV array and PVezRack[®] SolarRoof components as required in AS/NZS 5033: 2021.
- Ensuring that the roof, its rafters/purlins, connections, and other structural support members can support the array under building live load conditions;
- Ensuring that screws to fix interfaces have adequate pullout strength and shear capacities as installed;
- Maintaining the waterproof integrity of the roof, including selection of appropriate flashing;
- Verifying the compatibility of the installation considering preventing electrochemical corrosion between dissimilar metals. This may occur between structures and the building and also between structures, fasteners and PV modules, as detailed in AS/NZS 5033: 2021.
- Verifying atmospheric corrosivity zone of installation site by referring to SNZ TS 3404:2018 or consulting local construction business to determine appropriate products and installations.

Product Warranty:

Please refer <u>PVezRack[®] Product Warranty</u> on our website.

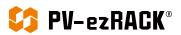


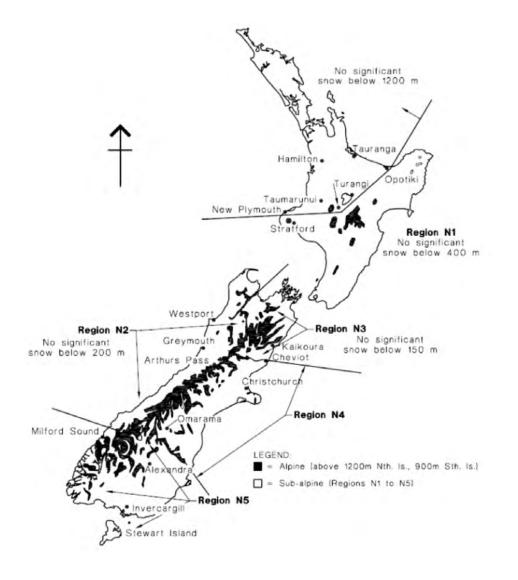
Planning


Determine the wind region of your installation site

Wind regions map below shows 4 different wind regions in New Zealand: NZ1, NZ2, NZ3 and NZ4.

The lee (effect) multiplier (M1ee) shall be evaluated for New Zealand sites in the lee zones below. In wind regions of NZ1 and NZ2 with M1ee over 500 m above sea level, the interface spacing reduction is applied. Please refer to note 25 of engineering certificate.





Locations of New Zealand lee Zones

For installation sites located in Sub-alpine Regions (shown on the map below), please refer to Note 26 of engineering certificate for maximum interface spacing and see "Examples" in certificate to understand how to use maximum spacing in Sub-alpine Regions.

If your installation site is in Alpine regions, please contact Clenergy to obtain a project specific engineering certificate to support your installation.

New Zealand - Approximate Locations of Alpine and Sub-alpine Regions

Determine the Terrain Category

It requires to determine the right terrain category to ensure the installation meets the maximum interface spacing specified in the engineering certificate.

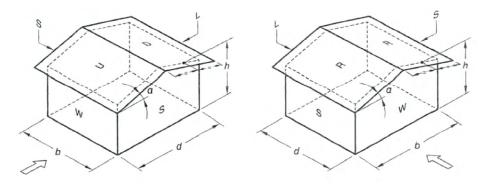
Terrain Category 1 (TC1) – Very exposed open terrain with very few or no obstructions, and all water surfaces (e.g. flat, treeless, poorly grassed plains; open ocean, rivers, canals, bays and lakes).

Terrain Category 2 (TC2) – Open terrain, including grassland, with well-scattered obstructions having heights generally from 1.5 m to 5 m, with no more than two obstructions per hectare (e.g. farmland and cleared subdivisions with isolated trees and uncut grass).

Terrain Category 3 (TC3) – Terrain with numerous closely spaced obstructions having heights generally from 3 m to 10 m. The minimum density of obstructions shall be at least the equivalent of 10 house-size obstructions per hectare (e.g. suburban housing, light industrial estates or dense forests).

Terrain Category 4 (TC4) – Terrain with numerous large, high (10 m to 30 m tall) and closely spaced constructions, such as large city centres and well-developed industrial complexes.

If your installation site is not at TC 2 or 3, please contact Clenergy to obtain a project specific engineering certificate to support your installation.

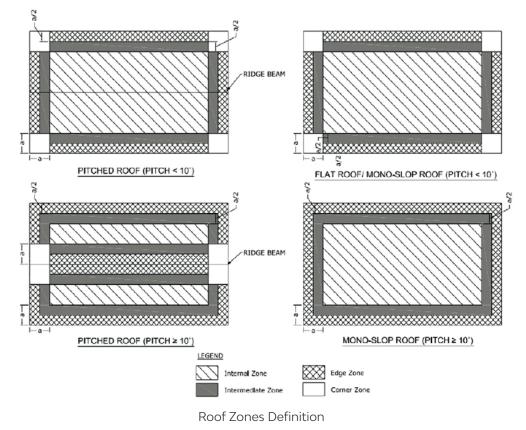

Verify Atmospheric Corrosivity Zone of Installation Site

Please refer "SNZ TS 3404:2018 Durability Requirements for Steel Structures and Components" or consult local construction business to verify corrosivity category of installation site to determine appropriate corrosivity class roof interface screw.

Determine Building Dimension

This document provides sufficient information for the PVezRack[®] SolarRoof system installation up to 20 meters building height (average roof height of structure above the ground, see the diagram below). If your building is more than 20 meters high, please contact Clenergy to obtain project specific engineering certificate to support your installation.

Building horizontal dimensions (b and d) are required to calculate the ratio of h/d to determine maximum interface spacing.


Parameters for Rectangular Enclosed Buildings

Determine the Installation Area of Roof

There are 4 different roof zones for tilt leg installation: Internal Zone, Intermediate Zone, Edge Zone and Corner Zone. Please see diagrams and steps below to define area of each zone.

- Step 1. Determine building height (h), width (b) and length (d) see diagram above;
- Step 2. The lowest value between "b x 0.2" and "d x 0.2 is "a" if h/b or h/d 0.2;
- Step 3. "a" equates to 2h, If both h/b and h/d < 0.2,

Verify Rafter/Purlin Properties of Building

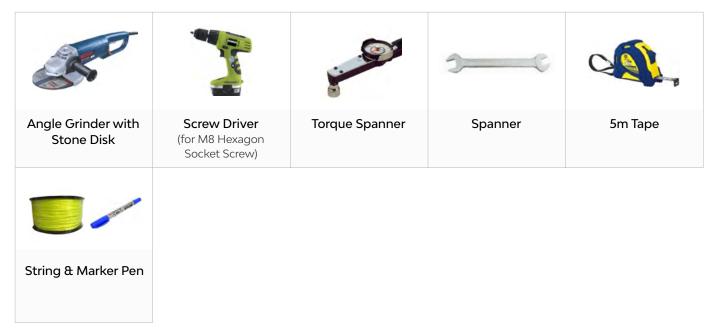
Please verify rafter/purlin properties of building, which could affect the interface spacing. For example, tin interface spacing on the metal purlin in the certification letter is based on steel purlin G450 1.5 mm thick. If the steel purlin is less than 1.5 mm thick, the corresponding reduction factor of interface spacing will be applied. Please refer generic notes for details.

Determine the Maximum Rail Support Spacing

Please refer to the Certification Letter and Interface Spacing Table. If a project specific Certification Letter has been provided, please refer to the support spacing in this letter.

Verify Maximum Rail End Overhang

Rail end overhang should be not over 40% of the interface spacing. For example, if the interface spacing is 1500mm, the Rail end overhang can be up to 600mm only.


Acquire PV Modules Clamping Zone Information

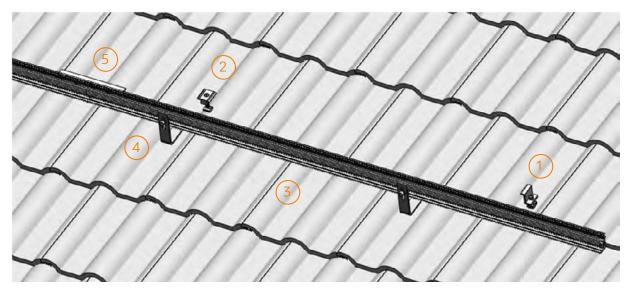
It is recommended to acquire PV modules clamping zone info. from PV modules manufacturer, which can help to plan interfaces positions on the roof and rails orientation and positions.

Tools and Components

Tools

Components

		THE SECOND		
ER-I-01 Tile Interface	ER-I-01/CS Tile Interface, Galvanized Steel	ER-I-01/EZC/ECO Tile Interface with ezClick connection for ECO-Rail	ER-I-02 Flat Tile Interface	ER-I-04 Slate Interface
		and the second s		
ER-I-23 Tile Interface -Landscape	ER-I-26 Tile Interface -Side mount	ER-I-51 Tile Interface, 118mm horizontal arm		
		_	1	


ER-I-05A/EZC/ECO ER-I-05/CM EZ-AD-C43 ER-I-05 ER-I-25 Tin Interface with Curved Base for Corrugated Roof Adapter (Puck) for Corrugated Iron Roof Tin Interface with Tin Interface A with Tin Interface Click Module ezClick connection ER-HB-8/150 ER-HB-MP/8/150EP Hanger Bolt for wood Hanger Bolt for metal purlin purlin

System Overview

Overview of PVezRack® SolarRoof

Tile Roof

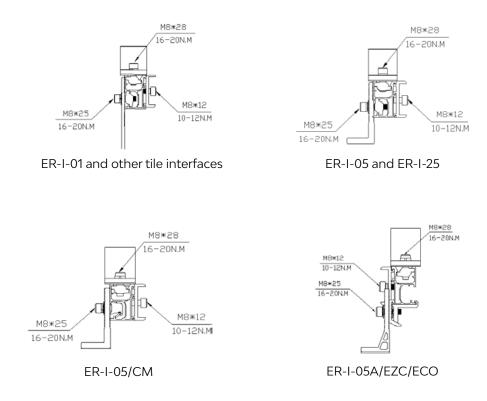
1. End Clamp 2. Inter Clamp 3. ECO Rail 4. Tile interface 5. Splice for ECO Rail

1. End Clamp 2. Inter Clamp 3. ECO Rail 4. Tin interface 5. Splice for ECO Rail

Tin Roof

Precautions during Stainless Steel Fastener Installation

Improper operation may lead to deadlock of Nuts and Bolts. The steps below should be applied to stainless steel nut and bolt assembly to reduce this risk.

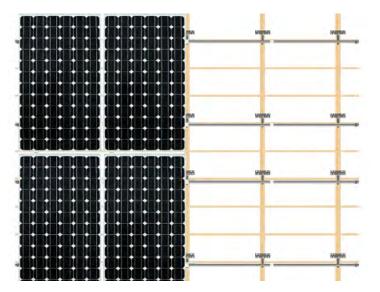

General installation instructions:

- (1) Apply force to fasteners in the direction of thread
- (2) Apply force uniformly, to maintain the required torque
- (3) Professional tools and tool belts are recommended

(4) In some cases, fasteners could be seized over time. As an option, if want to avoid galling or seizing of thread, apply lubricant (grease or 40# engine oil) to fasteners prior to tightening.

Safe Torques

Please refer to safe torques defined in this guide as shown in the figures below. In case power tools are required, Clenergy recommends the use of low speed only. High speed and impact drivers increase the risk of bolt galling (deadlock) If deadlock occurs and you need to cut fasteners, ensure that there is no load on the fastener before you cut it. Avoid damaging the anodized or galvanized surfaces.


Installation Instructions

Installation Dimensions

All drawings and dimensions in this Installation Guide are a generic reference only. PVezRack[®] SolarRoof is to be optimized to suit specific conditions for each project and should be documented in a construction drawing.

Major components of PVezRack[®] SolarRoof may be provided in section sizes and lengths varying from those shown in this guide. The installation process detailed in this instruction guide remains the same regardless of changes in component size.

If you need to do any on-site modifications or alteration of the system please provide marked up drawings/sketches for Clenergy's review, prior to modification, for comment and approval.

Installation Instruction

- Assess the number of modules in the vertical direction using the module height plus at least 18mm between modules (please check the installation manual of the solar module manufacturer);

- Assess the Number of modules in the horizontal direction using the module width plus 18 mm (20 mm if using Universal Clamps) between the modules.

Notes:

The standard end clamp will also add 20 mm (except for dual end clamps) on each side to the space required;

- Assess the horizontal spacing of the Roof Hooks;

- Assess the vertical spacing of the Roof Hooks = approx. 1/2 to 3/4 of module height;

- Always check the installation manual of the PV-Module you use in order to determine the allowed fixing points on the module frame.

Incorrect

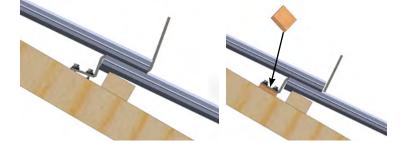
PV-ezRACK[®]

Determine the positions of the Roof Hooks according to your plans. Remove the roof tiles at the marked positions or, if possible, simply push them up slightly.shown in Figures 5.3C and 5.3D.

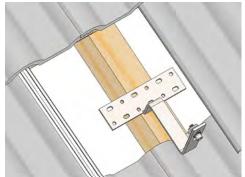
Fix the Roof Hooks to the rafter using Clenergy provided Buildex 14 gauge Hex Head Zips screw with minimum 25 mm embedment as shown in the figure on the right following the Buildex screws installation guide below:

- Use a 3/8" Hex Socket.

- Use a mains powered or cordless screw driver with a drive speed of 3,000 RPM maximum.


- Fit the driver bit into the screw and place at the fastening position.


- Apply consistently firm pressure (end load) to the screw driver until the screw is fastened.


The roof hook must not press against the roof tile. If necessary, pack the roof hook with max pack height of 17 mm for Clenergy provided Buildex 50 mm long screw, with max pack height of 35 mm for Clenergy provided Buildex 65 mm long screw.

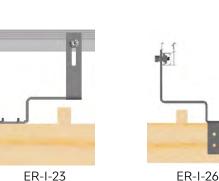
If necessary, use an angle grinder to cut a recess in the tile covering the Roof Hook at the point where the Roof Hook extends so that the tile lies flat on the surface. If grooved tiles are used, it will also be necessary to cut a recess in the

lower tile.

Correct

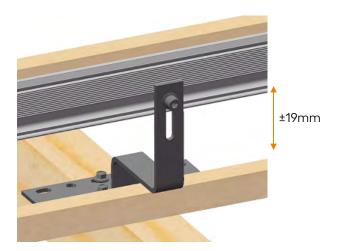
Caution! Do not use fitted roof hooks as a ladder, as this extreme point load could damage the tile below.

Variation for installation on plain tile roofs with plain tile roof cladding: A recess must be cut into the tiles around the position of the roof hook. The tile flashing should be used if necessary to prevent ingress of water.


Rail Installation

To connect several rails together, slide half of the splice into the rear side of the rail. Fasten the first M8 Bolt using an Allen key, and slide the next rail into the splice. Tighten the second M8 Bolt using an Allen key. Splice provides the electrical connection between the 2 rails through the pressure bolts. This eliminates the need of using 2 earthing lugs Recommended torque is 10 ~12 Nm.

If the rails consist of different lengths, always begin with the shortest piece. Install the PV modules on the Roof Hooks and fasten loosely with M8 x 25 bolt and washers as shown in the figure on the right. Two to three screw turns are adequate for loose installation.



Code-Compliant Planning and Installation Guide V 2.0 (New Zealand) - Complying with AS/NZS 1170.2-2021 - 14

Adjust the vertical and horizontal positioning using the long hole in the Roof Hook and the loosely connected Z Module in the rail, as shown in the figure on the right. The roof hook should not protrude over the rail after the adjustment.

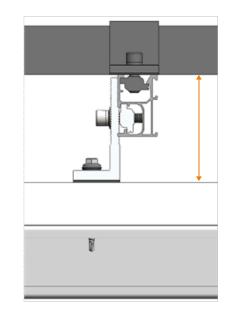
The recommended torque is 16~20N·m.

PV Module Installation

Please refer <u>PVezRack[®] Grounding System</u> for PV modules clamps and grounding lugs installations.
 The installers must ensure panel clamps are installed flush mounted to the panel frame and apply correct torque value of clamp fastener as shown in section "Safe Torques (Page 11)".

Tin Interface Installation

For installations using ER-I-05,Tin Interface equipped with Buildex 14-11 x 70 (14 gauge, 6.3 mm, 11 TPI, 70 mm long) Hex Head Zips screw. Fix the ER-I-05 at the planned locations on metal or wood purlins as shown in the figure on the right following the Buildex screws installation guide below:


- Use a 3/8" Hex Socket.

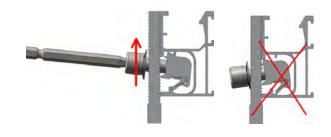
- Use a mains powered or cordless screw driver with a drive speed of 3,000 RPM maximum.

- Fit the driver bit into the screw and place at the fastening position.

- Apply consistently firm pressure (end load) to the screw driver until the screw is fastened.

- Screws with bonded washers should be tightened only until the washer is gripped firmly enough to provide a watertight seal. The screws should be neither under tightened nor over tightened to lead to water penetration. Take particular care to ensure the screw is driven perpendicular to the interface to avoid deformation of the washer.

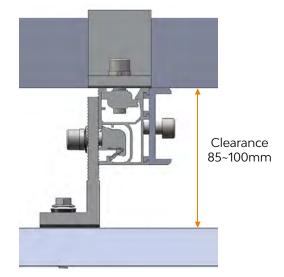
Clearance 85~100mm


Repeat "Rail Installation (Page 14)" and "PV Module Installation (Page 15)" to install the Rails and PV Modules.

Notes:

- The purlin thickness should be no less than 0.42mm and no more than 2.4mm;
- Please refer to the recommended torques in "Safe Torques (Page 11)";
- Screws not exposed to frequent rain should be washed down with fresh water at least every 6 months to meet the warranty conditions of Buildex screws.

For installations using ER-I-05/CM, Tin Interface with Click Module, equipped with Buildex 14-11 x 70 (14 gauge, 6.3 mm, 11 TPI, 70 mm long) Hex Head Zips screw. . Fix the ER-I-05/ CM at the planned locations on metal or wood purlins as shown in the figure on the right following the Buildex screws installation guide above. Repeat "Rail Installation (Page 14)" and "PV Module Installation (Page 15)" to install the Rails and PV Modules.

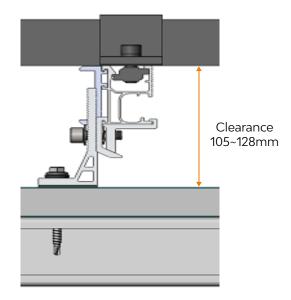

When fastening ER-I-05/CM with rail, it needs to lift up the bolt of click module to make click module well touch with upper rib of side channel of rail. So, the click module can be fixed into the rail properly as shown in the figure on the right.

Notes:

- The purlin thickness should be no less than 0.42mm and no more than 2.4mm;

- Please refer to the recommended torques in "Safe Torques (Page 11)";

- Screws not exposed to frequent rain should be washed down with fresh water at least every 6 months to meet the warranty conditions of Buildex screws.


For installations using ER-I-05A/EZC/ECO, Tin Interface with ezClick connection with Buildex 14-11 x 70 (14 gauge, 6.3 mm, 11 TPI, 70 mm long) Hex Head Zips screw. Fix the ER-I-05A/EZC/ECO at the planned locations on metal or wood purlins as shown in the figure on the right following the Buildex screws installation guide above. Repeat "Rail Installation (Page 14)" and "PV Module Installation (Page 15)" to install Rails and PV Modules.

Notes:

- The purlin thickness should be no less than 0.42mm and no more than 2.4mm;

- Please refer to the recommended torques in "Safe Torques (Page 11)";

- Screws not exposed to frequent rain should be washed down with fresh water at least every 6 months to meet the warranty conditions of Buildex screws.

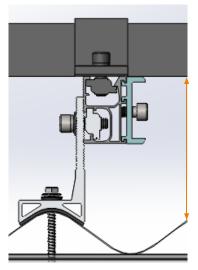
For installations using ER-I-25, Tin Interface with Curved Base for Corrugated Roof with Buildex 14-11 x 70 (14 gauge, 6.3 mm, 11 TPI, 70 mm long) Hex Head Zips screw. Fix the ER-I-25 at the planned locations on metal or wood purlins as shown in the figure on the right following the Buildex screws installation guide above. Repeat "Rail Installation (Page 14)" and "PV Module Installation (Page 15)" to install Rails and PV Modules.

Notes:

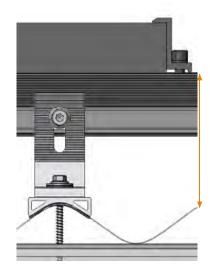
- The purlin thickness should be no less than 0.42mm and no more than 2.4mm;

- Please refer to the recommended torques in "Safe Torques (Page 11)";

- Screws not exposed to frequent rain should be washed down with fresh water at least every 6 months to meet the warranty conditions of Buildex screws.

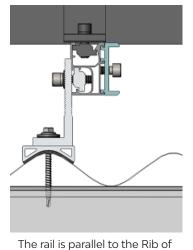

For installations using EZ-AD-C43 and ER-I-05, Adapter (Puck) for Corrugated Iron Roof and Tin Interface. Attach the EZ-AD-C43 on the planned position and then fix the ER-I-05 on metal or wood purlins as shown in the figure on the right following the Buildex screws installation guide above. Repeat "Rail Installation (Page 14)" and "PV Module Installation (Page 15)" to install Rails and PV Modules.

Notes:


- The purlin thickness should be no less than 0.42mm and no more than 2.4mm;

- Please refer to the recommended torques in "Safe Torques (Page 11)";

- Screws not exposed to frequent rain should be washed down with fresh water at least every 6 months to meet the warranty conditions of Buildex screws.



Clearance 89~104mm

Clearance 89~104mm

The rail is perpendicular to the Rib of metal sheet roof

metal sheet roof

Clearance 89~104mm

NOTE:

WHEN USING TIN INTERFACES FOR INSTALLATION WORKS, SCREWS NOT EXPOSED TO FREQUENT RAIN SHOULD BE WASHED DOWN WITH FRESH WATER AT LEAST EVERY 6 MONTHS TO MEET THE WARRANTY CONDITIONS OF BUILDEX SCREWS.

Side Channel Cover for Cutter-Rail Installation (optional)

After cables going into the side channel of Cutter-Rail, click covers into side channel of Cutter-Rail at the required places shown in Figures at the right side.

Notes:

1. Side channel cover is made of mill finish aluminium, which is only compatible with Cutter rail;

2. The main purpose of side channel cover is to cover the cables running through side channel of Cutter rail. To achieve the cable management purpose is also to require ezclick tile or tin interfaces only as they can leave side channel full open and not cause any obstruction or damage to the cables;

3. If requires the position adjustment, it is recommended to slide it on the channel rather than uninstallation and reinstallation, which could deform it due to very thin thickness.

Hanger Bolt Installation

PV-ezRACK[®]

Hanger Bolt for Tile Roof Installation

Hanger bolt (ER-HB-8/150) installation on tile roof is only applicable for tile having some part of flat surface, where the rubber seal of hanger bot can mount flush on the tile not to cause waterproof problem. Please note it is installer's responsibility to verify feasibility of tile brackets penetration and to ensure tiles are not cracked and damaged in hanger bolt installation.

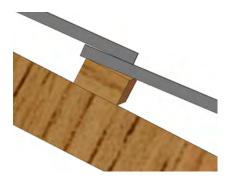
1. Purlins are to be identified when opening tiles and their positions are marked out on the tiles.

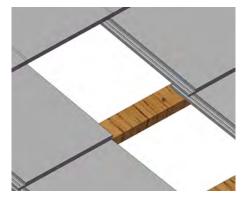
2. Based on installation plan and Hanger bolt spacing info., hanger bolt locations are marked on the tiles.

Notes:

Please find tin interface spacing in the certification letter for hanger bolt spacing.

3. Drill 10 mm hole on the marked location of tile and stop when reaching the purlins.


Note: For some installations, it needs to drill through two tiles (overlap) to reach the purlin.


4. Through 10 mm hole on the tiles, pre-drill 6.5 mm hole on the wood purlin for hanger bolt. The tiles are not removed when drilling this hole. After the drilling, clean the dust around 10 mm hole.

5. Adjust the position of rubber seal on the hanger bolt (ER-HB-8/150) to ensure hanger bolt have minimum 25 mm penetration depth into the wood purlin.

Drive and press the hanger bolt firmly in an axial manner to the wood purlin till the rubber seal is firmly flush on the tile and turn the nut down till touching the rubber seal. Please apply for low rotational speed of drive, preferably less than 300 rpm to reduce threads damage. Please turn another 4 threads cycle to press the rubber seal.

Notes:

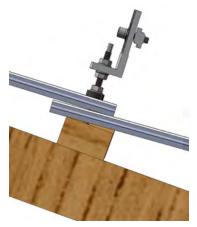
1) Purlin thickness and tile thickness need to be verified to decide position of rubber seal for appropriate penetration depth;

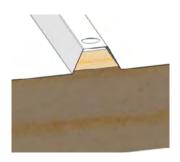
2) It shall apply Sikaflex (or similar) sealant around the bolt to fill the gap between the bolt and tile before fixing hanger bolt. Please refer Sikaflex (or similar) instruction for use. It is also recommended to use Loctite Threadlocker Blue (or similar) for the nut holding the rubber seal in place to prevent hanger bolt/nut from leaking or loosening. Please refer Loctite (or similar) instruction for use.

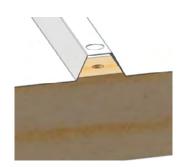
6. Screw out the top nut of hanger bolt, connect and adjust tin foot position and tighten the top nut with the recommended torque of 16~20 $N{\cdot}m.$

Follow sections "Rail Installation (Page 14)" and "PV Module Installation (Page 17)" to install the Rails and PV Modules.

1. Hanger Bolt for wood purlin Installation


Hanger bolt (ER-HB-8/150) installation on tin roof is recommended for trapezoidal profile of roof or similar one having flat surface on the rib.


Drill 11 mm hole on the marked location of roof sheet according to installation plan.


Through 11 mm hole on the roof sheet, pre-drill 6.5 mm hole on the wood purlin for hanger bolt.

Adjust the position of rubber seal on the hanger bolt (ER-HB-8/150) to ensure hanger bolt have minimum 25 mm penetration depth into the wood purlin.

Drive and press the hanger bolt firmly in an axial manner to the wood purlin till the rubber seal is firmly flush on the tile and turn the nut down till touching the rubber seal. Please apply for low rotational speed of drive, preferably less than 300 rpm to reduce threads damage. Please turn another 4 threads cycle to press the rubber seal.

Notes:

1) Penetration depth into the wood purlin is used to decide position of rubber seal;

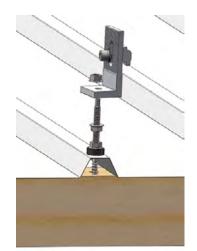
2) It shall apply Sikaflex (or similar) sealant around the bolt to fill the gap between the bolt and tin roof sheet before fixing hanger bolt. Please refer Sikaflex (or similar) instruction for use. It is also recommended to use Loctite Threadlocker Blue (or similar) for the nut holding the rubber seal in place to prevent hanger bolt/nut from leaking or loosening. Please refer Loctite (or similar) instruction for use.

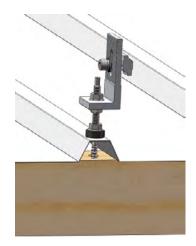
3) The roof sheet should not have visible deformation after hanger bolt installation.

Screw out the top nut of hanger bolt, connect and adjust tin foot position and tighten the top nut with the recommended torque of 16~20 N·m

Follow sections "Rail Installation (Page 14)" and "PV Module Installation (Page 16)" to install the Rails and PV Modules.

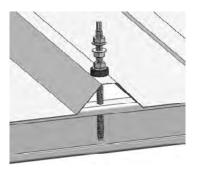
2. Hanger Bolt for metal purlin Installation

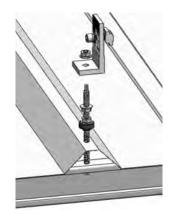

Hanger bolt (ER-HB-MP/8/150EP)

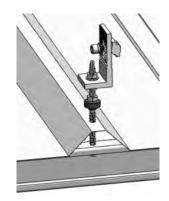

installation on tin roof is recommended for trapezoidal profile of roof or similar one having flat surface on the rib.

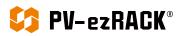
Drill 11 mm hole on the marked location of roof sheet according to installation plan.

Through 11 mm hole on the roof sheet, pre-drill 6.5 mm hole on the metal purlin for hanger bolt.

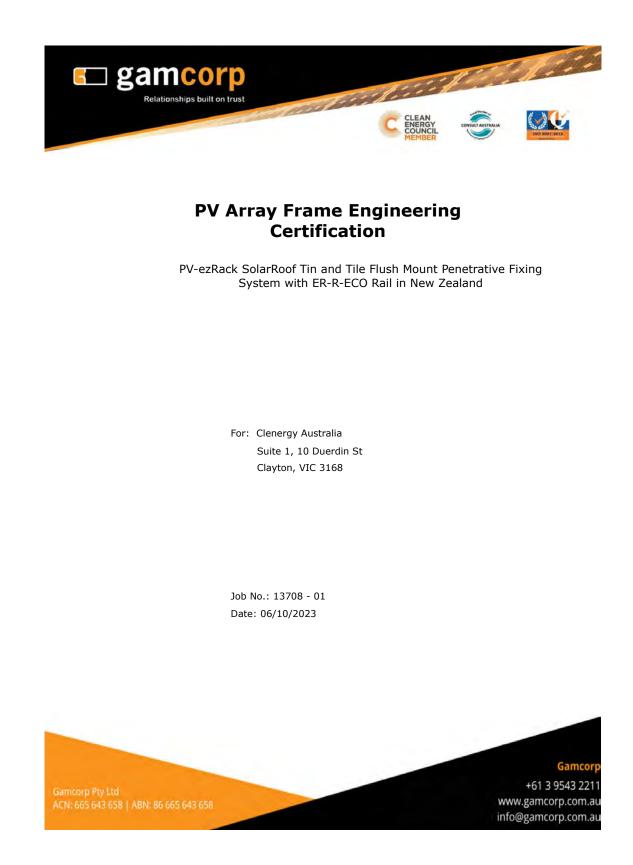

Drive and press the hanger bolt (ER-HB-MP/8/150EP) firmly in an axial manner to the metal purlin till the rubber seal is firmly flush on the tile and turn the nut down till touching the rubber seal. Please apply for low rotational speed of drive, preferably less than 300 rpm to reduce threads damage. Please turn another 4 threads cycle to press the rubber seal.


Notes:


1) It shall apply Sikaflex (or similar) sealant around the bolt to fill the gap between the bolt and tin roof sheet before fixing hanger bolt. Please refer Sikaflex (or similar) instruction for use. It is also recommended to use Loctite Threadlocker Blue (or similar) for the nut holding the rubber seal in place to prevent hanger bolt/ nut from leaking or loosening. Please refer Loctite (or similar) instruction for use. 2) The roof sheet should not have visible deformation after hanger bolt installation.


Screw out the top nut of hanger bolt, connect and adjust tin foot position and tighten the top nut with the recommended torque of 16~20 N·m.

Follow sections "Rail Installation (Page 14)" and "PV Module Installation (Page 17)" to install the Rails and PV Modules.



Engineering Certificate

Document Control Record

A person using Gamcorp document or data accepts the risk of:

a. Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version

Contraction and a second

b. Using the documents or data for any purpose not agreed to in writing by Gamcorp.

Document Co	ntrol								
Report Title		PV Array Frame Engineering Certification							
Document ID		13708-01/JD		Job No.	13708				
File Path		G:\Shared driv	ves\13700\13	700 - 13799\1	.3708\03 CER	TIFICATION			
Client		Clenergy Austr	alia	Client Contact	Geza Anderson				
Rev	Date	Revision Details	Prepared By	Author	Verifier	Approver			
0	06/10/2023	Certificate updated (Rev.1 of 13596)	updated JD (Rev.1 of		JG	JG			
Current Revision		0							

Approval			
Author Signature	NE	Approver Signature	GJ-S
Name	Jiewen Deng	Name	Jianzeng Geng
Title	Structural Engineer	Title	Technical Director

COPYRIGHT: The concepts and information contained in this document are the property of Gamcorp Pty Ltd. Use or copying of this document in whole or in part without the written permission of Gamcorp constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of Gamcorp Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Gamcorp Pty Ltd and its Client. Gamcorp Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

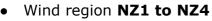
Our Ref:13708/JD 06 October 2023

Clenergy Australia Suite 1, 10 Duerdin St Clayton, VIC 3168

PV Array Frame Engineering Certification

The second se

<u>PV-ezRack SolarRoof Tin and Tile Flush Mount Penetrative Fixing System with</u> <u>ER-R-ECO Rail in New Zealand</u>


Gamcorp Pty Ltd, being Structural Engineers within the meaning of Australian Building Regulations, have carried out a structural design check of Clenergy PV-ezRack SolarRoof Tin and Tile Flush Mount System installation with penetrative fixing within New Zealand. The design check has been based on the information and test reports provided by Clenergy Australia.

This certificate is **only valid** for Clenergy PV-ezRack SolarRoof. The roof structure or the building structure and PV panels shall be assessed separately and accordingly.

This certificate is **only valid** as a whole. Any information extracted from this certificate is not valid if standing alone.

We find the Installation of Clenergy PV-ezRack SolarRoof Flush Mount System for New Zealand use to be structurally sufficient based on the following conditions:

- Loading to:
 - AS/NZS1170.0:2002 Structural design actions, Part 0: General principles;
 - AS/NZS1170.1:2002 Structural design actions, Part 1: Permanent, imposed and other actions;
 - AS/NZ1170.2:2021 Wind actions;
 - AS/NZ1170.3:2003 Snow and ice actions;
 - NZS 4219:2009 Seismic performance of engineering systems in buildings.
- Corrosion calculation for corrosion zone C1 C5 refer to
 - ISO 9223:2012-Corrosion of metals and alloys Corrosivity of atmospheres -Classification, determination and estimation
 - ISO 9224:2012-Corrosion of metals and alloys Corrosivity of atmospheres -Guiding values for the corrosivity categories
 - ISO 9226:2012-Corrosion of metals and alloys Corrosivity of atmospheres -Determination of corrosion rate of standard specimens for the evaluation of corrosivity
- Importance level **2**; Design life **25 years** Wind average recurrence interval of **250 years** Snow average recurrence interval of **50 years**

• Snow region

∃ gamco

- Sub-alpines (Regions N1 to N5)
 - Alpine regions are excluded for snow assessment
- Wind terrain category 2 & 3
- Maximum building height **20m**
- The assessed base PV panel dimensions are 2000mm x 1000mm
- PV panel to be parallel to the roof surface
- Maximum wind pressure is limited to 5kPa
- Maximum Weight of the PV panels to be 15 kg/m²
- Rails to be **ER-R-ECO**
- The base interface spacing is according to fixing into minimum **1.5BMT** steel or minimum **35mm embedment** into JD4 seasoned timber

The second s

1000 AM

- The interface spacing chosen for installation must be the **minimum value** in the attached table, which are determined by earthquake, snow and wind loads
- Each PV panel to be installed using **2 rails** minimum in all circumstances
- No PV panel to be installed within 2xs from edges and ridge. "s" is the maximum gap between the underside of the panel and the roof surface when installed on the roof (50mm≤s≤300mm)
- Installation of PV panels to be done in accordance with the PV panels installation manual
- The certification **excludes** assessment of roof structure and PV panels

Refer to summary table for interface spacing (Unit: mm).

There are two sets of tables. One set is for using fasteners of 14g-10 TPI screw and the other set is using fasteners of M8x150 hanger bolt.

NOTES:

- The recommended spacing nominated in this certification is based on the capacity of the array frame and the fixing of array frames to the roof, not the roof structure and PV panels. It is the responsibility of the installer to adopt the most critical spacing.
- The spacing shown in the interface tables shall be adjusted based on the assessment and requirement of the roof structures.
- If any of the above conditions cannot be met, the structural engineer must be notified immediately.

Construction is to be carried out strictly in accordance with the manufacturer's instructions. This work was designed by **Jiewen Deng** in accordance with the provisions of relevant Building Regulations and in accordance with sound, widely accepted engineering principles. This certificate is only valid till 06/10/2025. Gamcorp should be contacted for future validation. Contact Gamcorp for a customized system or if the site conditions are not covered by this assessment.

Yours faithfully, Gamcorp Pty Ltd

Jianzeng Geng Technical Director FIEAust CPEng NER 3108316 NT Registration: 239858ES QLD Registration: 18455 VIC Registration: PE0002539 TAS Registration: CC7263

Relationships built on trust

Gamcorp Pty Ltd A.C.N 665 643 658 A.B.N 86 665 643 658 www.gamcorp.com.au melbourne@gamcorp.com.au 37 Butler St, Richmond VIC 3121 Tel: 03 9543 2211

Structural Design Documentation

Flush Array Frame System Spacing Table

According to AS/NZS 1170.2-2021

with ECO Rail - Tin & Tile Roof (Pierced Fix Roof) With Fasteners - 14g-10 TPI screws or approved equivalent **within New Zealand** Terrain Category 2 & 3

For: CLENERGY AUSTRALIA 1/10 Duerdin St Clayton, VIC 3168

Job Number: 13708 (Eco Rail & 14g-10 TPI screws) Date: 6 October 2023

COPYRIGHT: The concepts and information contained in this document are the property of Gamcorp Pty Ltd. Use or copying of this document in whole or in part without the written permission of Gamcorp constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of Gamcorp Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Gamcorp Pty Ltd and its Client. Gamcorp Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Relationships built on trust

Gamcorp Pty Ltd A.C.N 665 643 658 A.B.N 86 665 643 658 www.gamcorp.com.au melbourne@gamcorp.com.au 37 Butler St, Richmond VIC 3121 Tel: 03 9543 2211

Job No:	13708				
Client:	CLENERGY AUSTRALIA				
Project:	Flush Array Frame System Spacing Table				
	with ECO Rail - Tin & Tile Roof (Pierced Fix Roof)				
	With Fasteners - 14g-10 TPI screws or approved equivalent				
Address:	within New Zealand				
Wind Terr	ain Category: Terrain Category 2 & 3				

Australian/New Zealand Standards

AS/NZS 1170.0:2002	Structural design actions
	Part 0: General principles
AS/NZS 1170.1:2002	Structural design actions
	Part 1: Permanent, imposed and other actions
AS/NZS 1170.2:2021	Structural design actions
	Part 2: Wind actions
AS/NZS 1170.3:2003	Structural design actions
	Part 3: Snow and ice actions
AS/NZS 1664.1:1997	Aluminium structures
	Part 1: Limit state design
AS/NZS 4600:2018	Cold-formed steel structures
AS 4100:2020	Steel structures
AS 1100.2020	
NZS 4219:2009	Seismic performance of engineering systems in buildings

Designed:	JD
Checked:	JG
Date:	Oct-23

Relationships built on trust CLENERGY AUSTRALIA Client: Project:

Address:

Wind

CLENERGY AUSTRALIA			
Flush Array Frame System Spaci	ng Table		Job: 13708
with ECO Rail - Tin & Tile Roof (F	Pierced Fix Roof)		Date: Oct-23
With Fasteners - 14g-10 TPI scre	ews or approved equivalent	1	Designed: JD
within New Zealand			Checked: JG
Flus	h Array Frame System Spacing Ta	<u>ble for Tin Roof (mm)</u>	
Type of Rail	ER-R-ECO		
Type of Interface	ER-I-05/ER-I-25		
Solar Panel Dimension	2mx1m		
Terrain category	2		
Fasteners to use	With Fasteners - 14g-10 TP	I screws or approved equivalent	
	h/d ≤ 0.5	*	
	Building He	ight – h (m)	
h≤5	5 <h≤10< th=""><th>10<h≤15< th=""><th>15<h≤20< th=""></h≤20<></th></h≤15<></th></h≤10<>	10 <h≤15< th=""><th>15<h≤20< th=""></h≤20<></th></h≤15<>	15 <h≤20< th=""></h≤20<>

Region		h:	≤5			5 <h≤10< th=""><th colspan="4">10<h≤15< th=""><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤15<></th></h≤10<>			10 <h≤15< th=""><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤15<>				15 <h≤20< th=""></h≤20<>			
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	665	1030	1415	1880	545	840	1145	1765	490	755	1030	1610	465	710	970	1515
NZ1&NZ2 with M _{lee} of 1.35	355	540	735	1135		445	600	925	-	400	540	835		380	510	785
NZ1&NZ2 with M _{lee} of 1.20	455	695	945	1480	375	570	770	1195	340	515	695	1075		485	655	1015
NZ3	490	750	1020	1595	400	610	830	1290	360	550	745	1160	340	520	705	1090
NZ4	530	815	1110	1695	435	665	905	1410	395	600	815	1265	370	565	770	1190

	h/d ≥ 1.0 *															
Wind		Building Height – h (m)														
Region		h	≤5			5 <h< th=""><th>i≤10</th><th></th><th></th><th>10<</th><th>h≤15</th><th></th><th></th><th>15<</th><th>h≤20</th><th></th></h<>	i≤10			10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	455	695	945	1475	370	565	770	1195	335	510	695	1070		485	655	1010
NZ1&NZ2 with M _{lee} of 1.35		370	495	765			410	625			370	565			350	530
NZ1&NZ2 with M _{iee} of 1.20		475	640	985		390	525	805		350	475	725			445	685
NZ3		510	685	1060		415	565	865		375	505	780		355	480	735
NZ4	360	550	745	1155		455	610	945		410	550	845		385	520	800

Relationships built on trust CLENERGY AUSTRALIA

Client: Project:

Flush Array Frame System Spacing Table with ECO Rail - Tin & Tile Roof (Pierced Fix Roof) With Fasteners - 14g-10 TPI screws or approved equivalent

Job: **13708** Date: **Oct-23** Designed: **JD**

Flush Array Frame System Spacing Table for Tin Roof (mm)

ER-R-ECO	
ER-I-05/ER-I-25	
2	
2mx1m	
3	
5	

With Fasteners - 14g-10 TPI screws or approved equivalent

5	
h/d ≤	≤ 0.5 *
Buildin	ig Height – h (m)

Wind		Building Height – h (m)														
Region		h	≤5			5<ł	n≤10			10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	810	1260	1740	1995	810	1260	1740	1995	695	1075	1480	1910	620	955	1310	1840
NZ1&NZ2 with M _{lee} of 1.35	430	660	895	1395	430	660	895	1395	370	565	770	1190		505	685	1060
NZ1&NZ2 with M _{lee} of 1.20	550	845	1155	1770	550	845	1155	1770	475	730	990	1550	425	650	880	1375
NZ3	590	910	1250	1795	590	910	1250	1795	510	785	1070	1680	455	700	950	1485
NZ4	640	990	1360	1820	640	990	1360	1820	555	855	1165	1725	495	760	1035	1620

							h,	/d ≥ 1.0	*							
Wind	Building Height – h (m)															
Region		h	≤5			5<ł	า≤10			10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	550	845	1150	1765	550	845	1150	1765	475	725	985	1540	420	645	875	1365
NZ1&NZ2 with M _{lee} of 1.35		445	605	930		445	605	930		385	520	800		345	465	715
NZ1&NZ2 with M _{lee} of 1.20	375	575	775	1205	375	575	775	1205		495	670	1030		440	595	920
NZ3	405	615	835	1300	405	615	835	1300	350	530	720	1115		475	640	990
NZ4	435	670	910	1420	435	670	910	1420	380	580	785	1215	340	515	695	1075

Relationships built on trust CLENERGY AUSTRALIA

Flush Array Frame System Spacing Table with ECO Rail - Tin & Tile Roof (Pierced Fix Roof) With Fasteners - 14g-10 TPI screws or approved equivalent within New Zealand

Address:

Type of Rail

Client:

Project:

Job:	13708
Date:	Oct-23
Designed:	JD
Checked:	JG

Flush Array Frame System Spacing Table for Tile Roof (mm) ER-R-ECO

2mx1m

ER-I-01 (see Note 23 for other Tile interfaces)

Type of Interface Solar Panel Dimension Terrain category Fasteners to use

2 With Fasteners - 14g-10 TPI screws or approved equivalent

h/d ≤ 0.5 *

	Building Height – h (m)															
Wind Region	h≤5				5 <h≤10< th=""><th colspan="4">10<h≤15< th=""><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤15<></th></h≤10<>			10 <h≤15< th=""><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤15<>				15 <h≤20< th=""></h≤20<>				
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	405	635	885	1455	330	515	710	1150		460	635	1015		435	600	955
NZ1&NZ2 with M _{lee} of 1.35		325	450	710			365	570			325	515				480
NZ1&NZ2 with M _{lee} of 1.20		425	585	930		345	475	745			425	670			400	630
NZ3		440	605	965		360	490	775			440	695			415	650
NZ4		460	635	1015		375	515	815		340	465	730			435	685

							h,	/d ≥ 1.0	*							
	Building Height – h (m)															
Wind Region		h	≤5		5 <h≤10 10<h≤15<="" th=""><th>h≤15</th><th></th><th colspan="3">15<h≤20< th=""><th></th></h≤20<></th></h≤10>						h≤15		15 <h≤20< th=""><th></th></h≤20<>			
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2		425	580	925		345	470	745			425	665			400	625
NZ1&NZ2 with Mlee of 1.35				470				380				345				
NZ1&NZ2 with M _{lee} of 1.20			390	610				495				445				420
NZ3			405	630			325	515				460				435
NZ4			425	665			345	540				480				455

Relationships built on trust CLENERGY AUSTRALIA

Client: Project:

Г

Flush Array Frame System Spacing Table with ECO Rail - Tin & Tile Roof (Pierced Fix Roof) With Fasteners - 14g-10 TPI screws or approved equivalent

Job: **13708** Date: **Oct-23** Designed: **JD**

Flush Array Frame System Spacing Table for Tile Roof (mm)

	h xF	E .1. <10	10 -1
		Building He	ight – h (m)
		h/d ≤ 0.5	*
	Fasteners to use	With Fasteners - 14g-10 TP	I screws or approved equivalent
	Terrain category	3	
	Solar Panel Dimension	2mx1m	
	Type of Interface	ER-I-01 (see Note 23 for o	ther Tile interfaces)
	Type of Rail	ER-R-ECO	

		building neight in (in)														
Wind Region		h	≤5			5<	n≤10			10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	495	785	1100	1850	495	785	1100	1850	425	670	935	1545	380	590	820	1335
NZ1&NZ2 with Mlee of 1.35		400	550	875		400	550	875		345	470	740			420	655
NZ1&NZ2 with M _{iee} of 1.20	335	520	720	1165	335	520	720	1165		445	610	975		395	545	860
NZ3	345	540	745	1210	345	540	745	1210		465	640	1025		410	565	900
NZ4	365	565	785	1275	365	565	785	1275		485	670	1075		430	595	945

							h,	/d ≥ 1.0	*							
		Building Height – h (m)														
Wind Region		h	≤5			5<ł	า≤10			10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	335	515	715	1155	335	515	715	1155		445	610	975		395	540	855
NZ1&NZ2 with Mlee of 1.35			370	575			370	575				490				435
NZ1&NZ2 with M _{lee} of 1.20		350	480	755		350	480	755			410	640			365	565
NZ3		360	495	780		360	495	780			425	665			380	590
NZ4		380	520	820		380	520	820		325	445	700			395	620

💶 gamcorp

Relationships built on trust

CLENERGY AUSTRALIA
Flush Array Frame System Spacing Table
with ECO Rail - Tin & Tile Roof (Pierced Fix Roof)
With Fasteners - 14g-10 TPI screws or approved equivalent
within New Zealand

Job: 13708 Date: Oct-23 Designed: JD Checked: JG

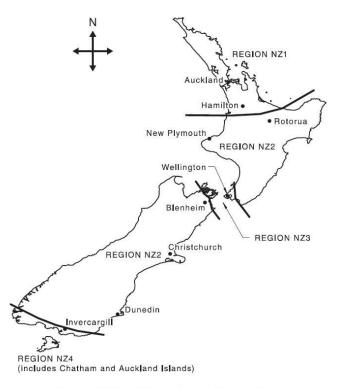
General Notes

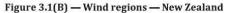
CI:----

Note 1 Following components are satisfied to use according to AS/NZS 1170.2:2021

Components	Part Number	Description
ECO Rail	ER-R-ECO, ER-R-ECO/BA	
ECO Rail Splice	ER-SP-ECO, ER-SP-ECO/BA	
Standard Inter Clamp	ER-IC-ST, ER-IC-ST/BA	
Standard End Clamp	ER-EC-ST, ER-EC-ST/BA	
Universal Clamp	C-U/30/46, C-U/30/46/BA	As per drawing or test report
Universal Clamp with Grounding Clip	C-U/30/46-G, C-U/30/46-G/BA	provided by client
Tin Interface	ER-I-05, ER-I-05/BA, ER-I-05/CM, ER-I-25, ER-I-25/BA	
Tin Interface A with ezClick	ER-I-05A/EZC/ECO	
Corrugated Roof adapter	EZ-AD-C43, EZ-AD-C43/BA	
Tile interface	ER-I-01, ER-I-02, ER-I-04, ER-I-23, ER-I-26, ER-I-51	

Note 2 Tin roof interface spacing calculated based on 1.5mm steel purlin G450 or 35mm screw embedment into F7 (Pine) timber (JD4 seasoned timber). Tile roof interface spacing calculated based on 25mm screw embedment (2 screws) into F7 (Pine) timber (JD4 seasoned timber).


Recommended screws	
--------------------	--


Recommended screws	
Metal Purlins/Battens	Fasteners to use
0.42mm to 0.75mm (G550)	14g-10 TPI Teks screws or approved equivalent
1.2mm to 2.4mm (G450)	14g-10 TPI Teks screws or approved equivalent
Timber Purlins/Battens/Rafters	Fasteners to use
Softwood F7 (Pine) (JD4 seasoned timber)	14g-10 TPI T17 screws or approved equivalent
Hardwood F17 (JD3 seasoned timber)	14g-10 TPI T17 screws or approved equivalent

Note 3 Maximum uplift wind pressure is limited to 5kPa.

- Note 4 Deflection is limited to Minimum of L/120 and 15mm.
- Note 5 Panels to be installed parallel to the roof surface.
- Note 6 "--" states NOT SUITABLE FOR INSTALLATION.
- Note 7 Terrain category definition according to section 4.2.1 of AS/NZS 1170.2:2021 as follows:
 Terrain Category 2 (TC2) Open terrain, including grassland, with well-scattered obstructions having heights generally from 1.5 m to 5 m, with no more than two obstructions per hectare (e.g. farmland and cleared subdivisions with isolated trees and uncut grass).
 Terrain Category 3 (TC3) Terrain with numerous closely spaced obstructions having heights generally from 3 m to 10 m. The minimum density of obstructions shall be at least the equivalent of 10 house-size obstructions per hectare (e.g. suburban housing, light industrial estates or dense
- forests).

Note 9 Base interface spacing to be multiplied by all applicable reduction/increase factors. Factored spacing less than one third of the panel width are not satisfied. (NOT SUITABLE FOR INSTALLATION)

gamcorp

Relationships	buil	t on	trust
CLENERGY AUSTRALIA			

Client:	CLENERGY AUSTRALIA	
Project:	Flush Array Frame System Spacing Table	Job: 13708
	with ECO Rail - Tin & Tile Roof (Pierced Fix Roof)	Date: Oct-23
	With Fasteners - 14g-10 TPI screws or approved equivalent	Designed: JD
Addroce	within New Zealand	Checked JG

Note 10 Wind direction multiplier (Md), Shielding multiplier (Ms) and Hill shape multiplier (Mh) are taken as 1.0.

Refer section 4.4 of AS/NZS 1170.2:2021 for Lee multiplier (Mlee) and topographic multiplier (Mt). Note 11

Lee multiplier (Mlee) is taken as 1.0 except for WR NZ1&NZ2 with Mlee which is taken as 1.35 and 1.2 separately. Refer section 4.4.1 of AS/NZS 1170.2:2021 for topographic multiplier (Mt). See Note 25 for Lee zones map. Note 12

Note 13 The assessment includes the effect of earthquake loads. See note 27 for the fixing spacing determined by earthquake loads.

Note 14 Alpine regions are excluded for snow assessment. See note 26 for the fixing spacing determined by snow loads.

Note 15 Refer section 2.3 and Figure 2.2 of AS/NZS 1170.3:2003 for sub-alpine regions. Probability factor (kp) and Exposure reduction coefficient (Ce) are taken as 1.0 and Shape coefficient (μ i) is taken as 0.7. See Note 26 for sub-alpine regions map.

Maximum panel weight is limited to 15kg/m². Note 16

Note 17 Maximum panel width is limited to 1200mm.

Maximum rail and panel width overhang is limited to the 40% of the allowable interface spacing. Note 18

PV panels clamping zone to be according to the manufacturer's specifications. Note 19

- Note 20 This certificate is applicable for the corrosion zones C1, C2, C3, C4 and C5. Correspondent roof interface must be used for each zone. Refer SNZ TS 3404:2018 for corrosion zones definitions.
- Note 21 This assessment is based on the capacity of the fixings of array frame to the structure and the array frame itself but not PV panel nor roof structures. Other building structures are deemed to be satisfactory. It is the responsibility of the installer to adopt the most critical spacing.

Note 22 Following reduction/increase factors to be applied to the base spacing for different type of tophat, purlin or batten or if timber screw embedment is reduced by using EZ-AD-C43 adaptor or fixing to smaller timber depth. In any case, it is not applicable for installation if the actual fixing spacing after applying spacing ratio is less than 300mm.

	Fixing	Туре				Spaci	ng Reduc	tion / Increase	
Purlin/Batten Material	Interfa ce	No. of screws	Purlin thickness (mm)	Min. Embedment (mm)	WR NZ1&NZ2	WR NZ1&NZ 2 with M _{lee =} 1.35	WR NZ1&NZ 2 with M _{lee =} 1.20	WR NZ3	WR NZ4
Timber F7 (Pine)	Tin	1	-	25	0%	0%	0%	0%	0%
Timber F7 (Pine)	Tin	1	-	30	0%	+15%	0%	0%	0%
Timber F7 (Pine)	Tin	1	-	35	0%	+15%	0%	0%	0%
Timber F17 (HW)	Tin	1	-	25	0%	+15%	0%	0%	0%
Timber F17 (HW)	Tin	1	-	30	0%	+15%	0%	0%	0%
Timber F17 (HW)	Tin	1	-	35	0%	+15%	0%	0%	0%
Metal (G550)	Tin	1	0.42	-	-75%	-75%	-75%	-75%	-75%
Metal (G550)	Tin	1	0.48	-	-71%	-71%	-71%	-71%	-71%
Metal (G550)	Tin	1	0.55	-	-67%	-67%	-67%	-67%	-67%
Metal (G550)	Tin	1	0.75	-	-55%	-55%	-55%	-55%	-55%
Metal (G450)	Tin	1	1.2	-	-20%	-20%	-20%	-20%	-20%
Metal (G450)	Tin	1	1.5	-	0%	0%	0%	0%	0%
Metal (G450)	Tin	1	1.9	-	0%	+15%	0%	0%	0%
Metal (G450)	Tin	1	2.4	-	0%	+15%	0%	0%	0%

Note 23 Tile roof interface spacing to be reduced as follows:

Interface	Spacing Reduction
ER-I-01	0%
ER-I-02	-52%
ER-I-04	-44%
ER-I-23	0%
ER-I-26	0%
ER-I-51	-74%

Note 24 Following reduction/increase factors to be applied to the base spacing for different panel length.

In any case, the actual fixing spacing after applying spacing ratio is limited to maximum 2000mm

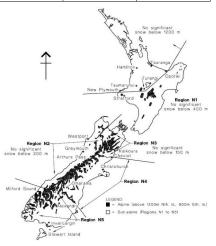
Donal Longth			Spaci	ing Reduction / Inc	rease	
Panel Length (mm)	No. of Rails	WR NZ1&NZ2	WR NZ1&NZ2 with $M_{lee} = 1.35$	WR NZ1&NZ2 with $M_{lee} = 1.20$	WR NZ3	WR NZ4
	2	+4%	+17%	+4%	+4%	+4%
1700	3	+15%	+37%	+15%	+15%	+15%
	4	+24%	+47%	+24%	+24%	+24%
	2	+3%	+11%	+3%	+3%	+3%
1800	3	+14%	+35%	+14%	+14%	+14%
Ī	4	+22%	+45%	+22%	+22%	+22%
	2	+1%	+4%	+1%	+1%	+1%
1900	3	+12%	+33%	+12%	+12%	+12%
	4	+20%	+43%	+20%	+20%	+20%
2000	2	0%	0%	0%	0%	0%
	3	+11%	+32%	+11%	+11%	+11%
	4	+19%	+41%	+19%	+19%	+19%
	2	-5%	-5%	-5%	-5%	-5%
2100	3	+9%	+30%	+9%	+9%	+9%
	4	+18%	+39%	+18%	+18%	+18%
	2	-10%	-10%	-10%	-10%	-10%
2200	3	+8%	+28%	+8%	+8%	+8%
	4	+16%	+38%	+16%	+16%	+16%
	2	-14%	-14%	-14%	-14%	-14%
2300	3	+7%	+26%	+7%	+7%	+7%
	4	+15%	+36%	+15%	+15%	+15%
	2	-18%	-18%	-18%	-18%	-18%
2400	3	+6%	+24%	+6%	+6%	+6%
	4	+14%	+35%	+14%	+14%	+14%

6	🛛 gam	corp		AN INTERNATIONAL ISO 9001:2015 REFERED COMPANY	CLEAN ENERGY COUNCIL MEMBER	CONSULT AUSTRALIA
Clients		hips built on trust		Continuum No. AU1222		"This Engineering E"
Client: Project:	CLENERGY AUSTRALIA Flush Array Frame System	m Snacing Table			Job: 13708	
FIOJECL.	with ECO Rail - Tin & Tile				Date: Oct-23	
	With Fasteners - 14g-10	TPI screws or approved	equivalent		Designed: JD	
Address:	within New Zealand				Checked: JG	
Note 25	Interface spacing to be redu	uced as follows for sites in w	vind regions NZ1 & NZ2 with Mlee o	ver 500m above s	ea level:	
	Site Elevation, E (m)	Spacing Reduction			57	
	E < 500	0%		N A	Jen	
	500 ≤ E < 700	-20%		\leftrightarrow		
	700 ≤ E < 900	-24%		· · · · ·	2.34	
	900 ≤ E < 1200	-31%		•	Auckland Sea	
	E ≥ 1200	N/A			4 J. 4	
					Hamiltono	\sim
	North Island				2 3	-

North Island							
1 Kaimai							
2	Taranaki						
3	Ruapehu						
4	Tararua						
5	Tararua and Orongorongo						
6	Coastal Wairarapa						
	South Island						
7	West Coast North						
8	West Coast Alps						
9	Awatere						
10	Inland Kaikoura						
11	Southern Alps						
12	Hunter						
13	Hakataramea						
14	St Mary's						
15	Pisa						
16	Dunstan						
17	Rock and Pillar						

Figure 4.6 — Locations of New Zealand lee zones

Note 26	Maximum Tin & Tile roof interface spacing in sub-alpine regions to be limited to follows for all roof zones (Tile roof interface capacity in
	compression must be checked separately before using these limitations).


			Maximum Interfa	ce Spacing (mm)	
Site Elevation, E (m)	Site Elevation, E (m) No. of Rails		Snow Region N2&N3	Snow Region N4	Snow Region N5
	2				1775
E ≤ 100	3	N/A	N/A	N/A	1970
	4	1			2120
	2		1775	1490	1775
100 < E ≤ 200	3	N/A	1970	1705	1970
	4		2120	1860	2120
	2		1775	1390	1580
200 < E ≤ 300	3	N/A	1970	1590	1780
	4	1	2120	1740	1900
300 < E ≤ 400	2	N/A	1775	1285	1490
	3		1970	1470	1705
	4]	2120	1620	1860
	2	1775	1500	1240	1410
400 < E ≤ 500	3	1970	1720	1415	1610
	4	2120	1870	1560	1775
	2	1490	1320	1160	1285
500 < E ≤ 700	3	1705	1510	1330	1470
	4	1860	1660	1460	1620
	2	1340	1200	1100	1195
700 < E ≤ 900	3	1535	1375	1260	1370
	4	1690	1515	1385	1510
	2	1195			
900 < E ≤ 1200	3	1370	N/A	N/A	N/A
	4	1510	· ·	'	'

2.3 NEW ZEALAND

- Alpine and sub-alpine regions are defined as follows:
- (a) N1 (southern portion of North Island of New Zealand, see Figure 2.2):
 - (i) Sub-alpine between 400 m and 1200 m.
- (ii) Alpine ≥1200 m.
- (b) N2 (South Island of New Zealand):
 - (i) Sub-alpine between 200 m and 900 m.
 - (ii) Alpine ≥900 m.
- (c) N3 (South Island of New Zealand):
 - (i) Sub-alpine between 150 m and 900 m.
 - (ii) Alpine ≥900 m.
- (d) N4 and N5 (South Island of New Zealand):
 - (i) Sub-alpine <900 m.
 - (ii) Alpine ≥900 m.

NOTE: This map is approximate only and altitude above mean sea level shall be used to determine snow region. For sub-alpine regions in the South Island (NZ, N3, N4 and N5) the regions coincide with the 1988 county bundaries. Where an alpine region exists between sub-alpine regions, the alpine region separates the 2 sub-alpine regions (which extend downwards from 1200 m altitude).

FIGURE 2.2 NEW ZEALAND—APPROXIMATE LOCATIONS OF ALPINE AND SUB-ALPINE REGIONS

Client:	Relationships built on trust CLENERGY AUSTRALIA
Project:	Flush Array Frame System Spacing Table with ECO Rail - Tin & Tile Roof (Pierced Fix Roof) With Fasteners - 14g-10 TPI screws or approved equivalent

Job: 13708 Date: Oct-23 Designed: JD Checked: JG

Address: within New Zealand

Note 27 Refer section 3.4.1 and Figure 2 of NZS 4219:2009 for zone factor (Z). Performance factor (Cp) is taken as 0.85 and Component risk factor (Rc) coefficient (Ce) is taken as 1.0 and High coefficient (Ch) is taken as 3. Maximum Tin & Tile roof interface spacing in Earthquake zone to be limited to follows for all roof zones.

		Maximum Interface Spacing (mm)					
Earthquake Factor, Z	No. of Rails	Max Panel Length	Max Panel Length	Max Panel Length	Max Panel Length	Max Panel Length	
		2000mm	2100mm	2200mm	2300mm	2400mm	
Z ≤0.13	2	2000	2000	2000	2000	2000	
2 30.15	3	2000	2000	2000	2000	2000	
0.13 < Z ≤0.15	2	2000	2000	2000	2000	1980	
0.13 < 2 30.15	3	2000	2000	2000	2000	2000	
0.15 < Z ≤0.18	2	1980	1960	1935	1915	1895	
0.15 < 2 ≤0.18	3	2000	2000	2000	2000	2000	
$0.18 < Z \le 0.20$	2	1930	1905	1885	1865	1845	
0.18 < 2 ≤ 0.20	3	2000	2000	2000	2000	2000	
0.20 < Z ≤ 0.23	2	1865	1845	1820	1800	1775	
0.20 < 2 ≤ 0.23	3	2000	2000	2000	1995	1970	
0.23 < Z ≤0.26	2	1805	1780	1755	1730	1705	
0.23 < 2 ≤0.26	3	2000	1975	1955	1930	1910	
0.26 < Z ≤0.30	2	1725	1700	1675	1650	1625	
0.20 < 2 ≤0.30	3	1930	1905	1885	1865	1845	
$0.30 < Z \leq 0.35$	2	1640	1615	1590	1565	1545	
0.30 < 2 ≤ 0.33	3	1860	1835	1815	1795	1770	
$0.35 < Z \le 0.40$	2	1570	1545	1520	1500	1475	
0.33 < 2 ≤ 0.40	3	1795	1770	1740	1715	1690	
0.40 < Z ≤ 0.45	2	1510	1485	1460	1440	1385	
0.40 < 2 ≤ 0.43	3	1725	1700	1675	1650	1625	
$0.45 < Z \le 0.50$	2	1455	1425	1360	1300	1245	
0.43 < 2 ≤ 0.30	3	1670	1640	1615	1590	1570	
0.50 < Z ≤ 0.55	2	1360	1295	1235	1180	1130	
0.30 < 2 ≤ 0.35	3	1615	1590	1565	1540	1520	
$0.55 < Z \le 0.60$	2	1245	1185	1130	1080	1035	
0.55 < 2 ≤ 0.00	3	1570	1545	1520	1500	1475	

Note:

The seismic assessment is based on the rail capacity and shear capacity of fixings.

Opunake lawera Patea Raetihi Ohakune Waiouru Napier Hastings Wanganui Waipa Waipukurai Taihape Marton Bulls Feilding Palmerston Nor Dannevirke Woodville Pahiatua Foxton/F Beach

0.44

0.60

0.60

0.33

0.30

0.16

d'	Location	Z	#	Location
1	Kaitala	0.13	36	Taupo
2	Paihia/Russell	0.13	37	Taumarunui
3	Kaikohe	0.13	38	Turangi
4	Whangarei	0.13	39	Gisborne
5	Dargaville	0.13	40	Wairoa
6	Warkworth	0.13	41	Waitara
7	Auckland	0.13	42	New Plymo
8	Manakau City	0.13	43	Inglewood
9	Waluku	0.13	44	Stratford
10	Pukekohe	0.13	45	Opunake
11	Thames	0.16	46	Hawera
12	Paeroa	0.18	47	Patea
13	Waihi	0.18	48	Raetihi
14	Huntiy	0.15	49	Ohakune
15	Ngaruawahia	0.15	50	Waiouru
16	Morrinsville	0.18	51	Napier
17	Te Aroha	0.18	52	Hastings
18	Tauranga	0.20	53	Wanganui
19	Mount Maunganui	0.20	54	Waipawa
20	Hamilton	0.16	55	Waipukurau
21	Cambridge	0.18	56	Taihape
22	Te Awamutu	0.17	57	Marton
23	Matamata	0.19	58	Bulls
24	Te Puke	0.22	59	Feilding
25	Putaruru	0.21	60	Palmerston
26	Tokoroa	0.21	61	Dannevirke
27	Otorohanga	0.17	62	Woodville
28	Te Kuiti	0.18	63	Pahiatua
29	Mangakino	0.21	64	Fexton/Fox
30	Rotorua	0.24	526.0	Beach
31	Kawerau	0.29	65	Levin
32	Whakatane	0.30	66	Otaki
33	Opotiki	0.30	67	Walkanae
34	Ruatoria	0.33	68	Paraparaun
35	Murupara	0.30	69	Masterton

	z	#	Location	Z
	0.28	70	Porirua	0.4
	0.21	71	Wellington CBD	0.4
	0.27	1	(north of Basin	
	0.36		Reserve)	
	0.37	72	Wellington	0.4
	0.18	73	Hutt Valley - south of Taita Gorge	0,4
	0.18	74	Upper Hutt	0.4
	0.18	75	Eastbourne - Point	0.4
	0.18	15	Howard	
	0.18	76	Wainuiomata	0.4
	0.18	77	Takaka	0.2
	0.19	78	Motueka	0.2
	0.26	79	Nelson	0.2
	0.27	80	Picton	0.3
	0.29	81	Blenheim	0.3
	0.38	82	St Arnaud	0.3
	0.39	83	Westport	0.3
	0.25	84	Reefton	0.3
	0.41	85	Murchison	0.3
	0.41	86	Springs Junction	0.4
	0.33	87	Hanmer Springs	0.5
_	0.30	88	Seddon	0.4
	0.31	89	Ward	0.4
	0.37	90	Cheviot	0.4
h	0.38	91	Greymouth	0.3
	0.42	92	Kaikoura	0.4
	0.41	93	Harihari	0.4
_	0.42	94	Hokitika	0.4
	0.36	95	Fox Glacier	0.4
		96	Franz Josef	0.4
	0.40	97	Otira	0.6
	0.40	98	Arthurs Pass	0.6
	0.40	99	Rangiora	0.8
	0.40	100		0.3
	0.42	100	Darfield	0.3

	Z	#	Location	Z
	0.40	102	Christchurch	0.22
	0.40	103	Geraldine	0.19
		104	Ashburton	0.20
_		105	Fairlie	0.24
	0.40	106	Temuka	0.17
	0.40	107	Timaru	0.15
	0.42	108	Mt Cook	0.38
	0.40	109	Twizel	0.27
		110	Waimate	0.14
	0.40	111	Cromwell	0.24
	0.23	112	Wanaka	0.30
	0.26	113	Arrowtown	0.30
	0.27	114	Alexandra	0.21
	0.30	115	Queenstown	0.32
	0.33	116	Milford Sound	0.54
	0.36	117	Palmerston	0.13
	0.30	118	Oamaru	0.13
	0.37	119	Dunedin	0.13
	0.34	120	Mosgiel	0.13
	0.45	121	Riverton	0.20
	0.55	122	Te Anau	0.36
	0.40	123	Gore	0.18
	0.40	124	Winton	0.20
	0.40	125	Balclutha	0.13
	0.37	126	Mataura	0.17
	0.42	127	Bluff	0.15
	0.46	128	Invercargill	0.17
	0.45	129	Oban	0.14

Figure 2 - Zone factor, Z

 Relationships built on trust

 Client:
 CLENERGY AUSTRALIA

 Project:
 Flush Array Frame System Spacing Table

 with ECO Rail - Tin & Tile Roof (Pierced Fix Roof)
 With Fasteners - 14g-10 TPI screws or approved equivalent

Job: 13708 Date: Oct-23 Designed: JD Checked: JG

Address: within New Zealand

Note 28 Building height is average roof height of structure above ground. Refer Figure 1 for definition of h, d and b.

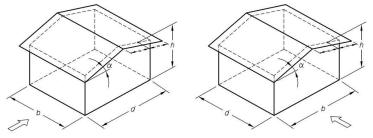
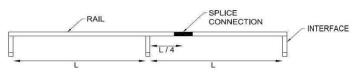



Figure 1 – h, d and b definition

Note 29 Rail splice connection must be placed at a quarter length of the spacing of interface. No Splice connection should be placed at the centre of spacing or over the interface.

Note 30 Refer Figure 2 for definition of roof zones. The smallest spacing to be used for panels fall between two (or more) roof zones.

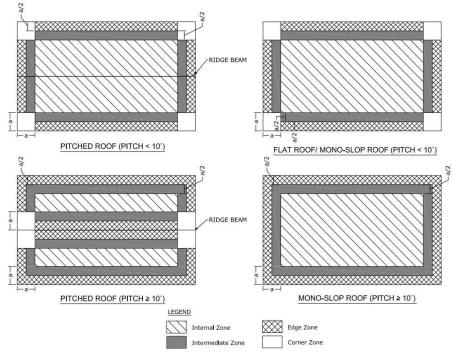


Figure 2- Roof Zones Definition

In Figure 2, the value of dimension "a" is the minimum of 0.2b or 0.2d, if (h/b) or $(h/d) \ge 0.2$; or 2h if both (h/b) and (h/d) < 0.2 (b & d are building dimensions and h is average roof height, see Figure 1)

Note 31 Installation of solar array to be done in accordance with the relevant Clenergy PV installation manual. Contact Clenergy if you are unable to comply with any of the above installation specifications.

ga

Job: 13708

Date: Oct-23 Designed: ${\bf JD}$

Checked: JG

Relationships built on trust CLENERGY AUSTRALIA

Flush Array Frame System Spacing Table Project:

with ECO Rail - Tin & Tile Roof (Pierced Fix Roof) With Fasteners - 14g-10 TPI screws or approved equivalent

Address: within New Zealand

 S_{Z}

S_{0.5} S_{1.0}

Tin Roof

h/d

Interface

Wind Region

Terrain Category

Building Height

Panel Dimension

No. of Rails Purlin Thickness

Sub-alpine Region

Site Elevation

Wind Region

Terrain Category

Panel Dimension

No. of Rails Purlin Thickness

Sub-alpine Region

Building Height

Tin Roof

h/d

Interface

Tile Roof

h/d

Wind Region

Terrain Category

Building Height

Panel Dimension

Sub-alpine Region

Terrain Category Building Height h/d

Panel Dimension

Minimum allowable spacing (1100/3=365)

Interface

No. of Rails Embedment F17

Tin Roof Wind Region

Interface

No. of Rails Purlin Thickness

Examples

Example 1

Example 2

Example 3

Example 4

Example 5

Client:

Tin Roof		factor
Wind Region	NZ1	-
Terrain Category	2	-
Building Height	4m	-
h/d	0.75	-
Interface	ER-I-05	-
Panel Dimension	2m x 1m	
No. of Rails	2	1
Purlin Thickness	1.5mm	1

Fixing spacing for h/d=z
$= S_{0.5} - [(S_{0.5} - S_{1.0}) / (1.0 - 0.5) \times (z - 0.5)]$
Fixing spacing for h/d=0.5
Fixing spacing for h/d=1.0

Roof Zone	Spacing, h/d=0.5
Internal Zone	1880 mm
Intermediate Zone	1415 mm
Edge Zone	1030 mm
Corner Zone	665 mm

Roof Zone	Spacing, h/d=1
Internal Zone	1475 mm
Intermediate Zone	945 mm
Edge Zone	695 mm
Corner Zone	455 mm

Fixing spacing for h/d=0.75, $S_{0.75} = S_{0.5} - [(S_{0.5} - S_{1.0}) / (1.0 - 0.5) \times (0.75 - 0.5)]$

NZ2, with Mlee of 1.2

3

12m

1.2

ER-I-05

1.75m x 1m

3 1.9mm

600m

NZ3

3

5m

0.5

ER-I-25

2.1m x 1.1m

2 2.4mm

N4 (E=200m))

NZ4

3

5m

0.5

ER-I-04

1.65m x 1.1m

2

35mm

N5 (E=200m)

N2 (E=600m)

factor

-

_

1.14

1.00

0.80

factor

-

-

0.95

1

*

factor

-

0.56

1.04

1.00

.

Final factor 1

Roof Zone	Final Spacing-mm
Internal Zone	1675
Intermediate Zone	1180
Edge Zone	860
Corner Zone	560

Final factor	0.91
	1
Roof Zone	Final Spacing-mm
Internal Zone	935
Intermediate Zone	610
Edge Zone	450
Corner Zone	

Final factor	0.95
Roof Zone	Final Spacing -mm
Internal Zone	1490*
Intermediate Zone	1185
Edge Zone	865
Corner Zone	560

(From Note 26, the maximum spacing is 1490mm, which is determined by snow)

Final factor	0.58
Roof Zone	Final Spacing -mm
Internal Zone	740
Intermediate Zone	455
Edge Zone	*
Corner Zone	*

	factor		
NZ2, with Mlee of 1.2	-	Final factor	0.62
3	-		
12m	-	Roof Zone	Final Spacing-mm
1.1	-	Internal Zone	640
ER-I-05	-	Intermediate Zone	415
2.4m x 1.1m	0.82	Edge Zone	305
2	0.82	Corner Zone	
1.9mm	1.00		•
700	0.76		

Site Elevation Sub-alpine Region N5 (E=700m) (From Note 26, the maximum spacing is 1285mm, which is determined by snow)

Earthquake zone, Z 0.6 (Arthurs pass)

(From Note 27, the maximum spacing is 1035mm, which is determined by earthquake)

Relationships built on trust

Gamcorp Pty Ltd A.C.N 665 643 658 A.B.N 86 665 643 658 www.gamcorp.com.au melbourne@gamcorp.com.au 37 Butler St, Richmond VIC 3121 Tel: 03 9543 2211

Structural Design Documentation

Flush Array Frame System Spacing Table

According to AS/NZS 1170.2-2021

with ECO Rail – Tin Roof (Pierced Fix Roof) with Fasteners - M8x150 hanger bolts or approved equivalent **within New Zealand** Terrain Category 2 & 3

For: CLENERGY AUSTRALIA 1/10 Duerdin St Clayton, VIC 3168

Job Number: 13708 (Eco Rail & M8x150 hanger bolts) Date: 6 October 2023

COPYRIGHT: The concepts and information contained in this document are the property of Gamcorp Pty Ltd. Use or copying of this document in whole or in part without the written permission of Gamcorp constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of Gamcorp Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Gamcorp Pty Ltd and its Client. Gamcorp Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Relationships built on trust Gamcorp Pty Ltd A.C.N 665 643 658 A.B.N 86 665 643 658 www.gamcorp.com.au melbourne@gamcorp.com.au

37 Butler St, Richmond VIC 3121 Tel: 03 9543 2211

Job No:	13708
Client:	CLENERGY AUSTRALIA

Project:	Flush Array Frame System Spacing Table
	with ECO Rail – Tin Roof (Pierced Fix Roof)
	with Fasteners - M8x150 hanger bolts or approved equivalent
Addroccu	within Now Zoolond

Address: within New Zealand

Wind Terrain Category:	Terrain Category 2 & 3
------------------------	------------------------

Australian/New Zealand Standards

AS/NZS 1170.0:2002	Structural design actions
	Part 0: General principles
AS/NZS 1170.1:2002	Structural design actions
	Part 1: Permanent, imposed and other actions
AS/NZS 1170.2:2021	Structural design actions
	Part 2: Wind actions
AS/NZS 1170.3:2003	Structural design actions
	Part 3: Snow and ice actions
AS/NZS 1664.1:1997	Aluminium structures
	Part 1: Limit state design
AS/NZS 4600:2018	Cold-formed steel structures
AS 4100:2020	Steel structures
NZS 4219:2009	Seismic performance of engineering systems in buildings

Designed:	JD
Checked:	JG
Date:	Oct-23

Relationships built on trust CLENERGY AUSTRALIA

Client: Project:

Flush Array Frame System Spacing Table with ECO Rail – Tin Roof (Pierced Fix Roof) with Fasteners - M8x150 hanger bolts or approved equivalent within New Zealand

Job: **13708** Date: **Oct-23** Designed: **JD** Checked: JG

Address:

				Flush	n Array F	rame S	stem Sp	acing Ta	ble for Ti	in Roof (mm)						
	Type of F	Rail				ER-R-ECO											
	Type of Interface					ER-I-05/ER-I-25											
	Solar Par	nel Dimer	nsion			2mx1m											
	Terrain c	ategory				2											
	Fastener	s to use				with Fas	teners - M	18x150 ha	nger bolt	s or appr	oved equi	valent					
							h,	/d ≤ 0.5	*		-						
Wind							Bu	ilding He	ght – h (r	n)							
Region		h	≤5			5<ł	า≤10			10<	h≤15		15 <h≤20< td=""></h≤20<>				
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	
NZ1&NZ2	845	1310	1615	1880	695	1065	1455	1765	625	960	1305	1695	590	905	1230	1660	
NZ1&NZ2 with M _{lee} of 1.35	450	685	930	1440		565	765	1175		510	690	1060		480	650	995	
NZ1&NZ2 with M _{lee} of 1.20	580	885	1205	1645	475	725	980	1520	430	655	885	1370		615	835	1285	
NZ3	620	950	1295	1665	510	780	1055	1550	460	700	950	1470	435	660	895	1385	
NZ4	675	1035	1410	1695	555	845	1150	1575	500	765	1035	1515	470	720	975	1485	

		h/d ≥ 1.0 *														
Wind							Bu	ilding He	ight – h (i	m)						
Region		h≤5 5 <h≤10< th=""><th></th><th></th><th>10<</th><th>h≤15</th><th></th><th></th><th>15<</th><th>h≤20</th><th></th></h≤10<>								10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	575	880	1200	1640	475	720	980	1515	425	650	880	1360		615	830	1280
NZ1&NZ2 with M _{lee} of 1.35		470	630	970			520	795			470	715			445	675
NZ1&NZ2 with M _{iee} of 1.20		600	815	1255		495	665	1020		445	600	920			565	870
NZ3		645	875	1350		530	715	1100		480	645	990		450	610	930
NZ4	460	700	950	1470		575	780	1200		520	700	1075		490	665	1015

* For intermediate values of h/d ratios, linear interpolation shall be used. Refer Note 27 for defination h and d.

Relationships built on trust CLENERGY AUSTRALIA

Client:

Wind

Flush Array Frame System Spacing Table Project:

with ECO Rail – Tin Roof (Pierced Fix Roof) with Fasteners - M8x150 hanger bolts or approved equivalent

Job: **13708** Date: **Oct-23** Designed: **JD**

Flush Array Frame System Spacing Table for Tin Roof (mm)

Type of Rail
Type of Interface
Solar Panel Dimension
Terrain category
Fasteners to use

ER-R-ECO ER-I-05/ER-I-25 2mx1m 3

with Fasteners - M8x150 hanger bolts or approved equivalent h/d ≤ 0.5 *

174 2 0.5										
	Building He	ight – h (m)								
5 <h≤10< th=""><th></th><th></th><th>10<h:< th=""></h:<></th></h≤10<>			10 <h:< th=""></h:<>							

Region		h:	≤5			5 <h≤10< th=""><th></th><th colspan="4">10<h≤15< th=""><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤15<></th></h≤10<>				10 <h≤15< th=""><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤15<>				15 <h≤20< th=""></h≤20<>			
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	
NZ1&NZ2	1030	1550	1740	1995	1030	1550	1740	1995	885	1365	1645	1910	790	1215	1575	1840	
NZ1&NZ2 with M _{lee} of 1.35	545	835	1135	1610	545	835	1135	1610	470	720	975	1515		645	870	1350	
NZ1&NZ2 with M _{lee} of 1.20	700	1075	1470	1770	700	1075	1470	1770	605	925	1260	1670	540	825	1120	1600	
NZ3	755	1160	1530	1795	755	1160	1530	1795	650	995	1355	1695	580	890	1210	1625	
NZ4	815	1260	1555	1820	815	1260	1555	1820	705	1085	1475	1725	630	965	1315	1650	

							h,	/d ≥ 1.0	*							
Wind							Bu	ilding Hei	ght – h (I	m)						
Region		h	≤5		5 <h≤10< th=""><th colspan="4">10<h≤15< th=""><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤15<></th></h≤10<>				10 <h≤15< th=""><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤15<>				15 <h≤20< th=""></h≤20<>			
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Interna
NZ1&NZ2	700	1070	1465	1765	700	1070	1465	1765	600	920	1255	1670	535	820	1115	1600
NZ1&NZ2 with M _{lee} of 1.35		570	770	1185		570	770	1185		490	665	1015		440	595	905
NZ1&NZ2 with M _{lee} of 1.20	475	730	985	1530	475	730	985	1530		630	850	1310		560	760	1165
NZ3	515	785	1065	1550	515	785	1065	1550	445	675	915	1415		605	815	1260
NZ4	555	850	1155	1575	555	850	1155	1575	480	735	995	1495	430	655	885	1370

* For intermediate values of h/d ratios, linear interpolation shall be used. Refer Note 27 for defination h and d.

Relationships built on trust

CLENERGY AUSTRALIA Client:

within New Zealand

Flush Array Frame System Spacing Table Project:

with ECO Rail – Tin Roof (Pierced Fix Roof) with Fasteners - M8x150 hanger bolts or approved equivalent

Job: 13708 Date: Oct-23 Designed: JD Checked: JG

General Notes

Address

Note 1 Following components are satisfied to use according to AS/NZS 1170.2:2021

Components	Part Number	Description				
ECO Rail	ER-R-ECO, ER-R-ECO/BA					
ECO Rail Splice	ER-SP-ECO, ER-SP-ECO/BA					
Standard Inter Clamp	ER-IC-ST, ER-IC-ST/BA					
Standard End Clamp	ER-EC-ST, ER-EC-ST/BA					
Universal Clamp	C-U/30/46, C-U/30/46/BA	As per drawing or test report				
Universal Clamp with Grounding Clip	C-U/30/46-G, C-U/30/46-G/BA	provided by client				
Tin Interface	ER-I-05, ER-I-05/BA, ER-I-05/CM, ER-I-25, ER-I-25/BA					
Tin Interface A with ezClick	ER-I-05A/EZC/ECO					
Hanger bolt for wood / metal purlin	ER-HB-MP/8/150RP, ER-HB-8/150					
Corrugated Roof adapter	EZ-AD-C43, EZ-AD-C43/BA					

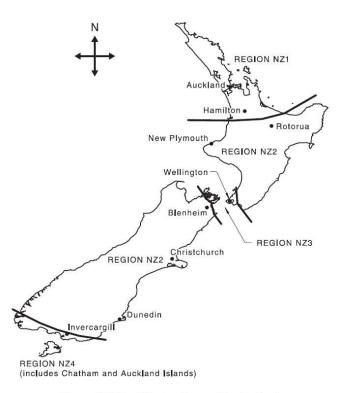
Note 2 Tin roof interface spacing calculated based on 1.5mm steel purlin G450 or 35mm screw embedment into F7 (Pine) timber (JD4 seasoned timber).

Recommended screws

Metal Purlins/Battens	Fasteners to use
0.42mm to 0.75mm (G550)	M8x150 hanger bolts or approved equivalent
1.2mm to 2.4mm (G450)	M8x150 hanger bolts or approved equivalent
Timber Purlins/Battens/Rafters	Fasteners to use
Softwood F7 (Pine) (JD4 seasoned timber)	M8x150 hanger bolts or approved equivalent
Hardwood F17 (JD3 seasoned timber)	M8x150 hanger bolts or approved equivalent

Note 3 Maximum uplift wind pressure is limited to 5kPa.

Note 4 Deflection is limited to Minimum of L/120 and 15mm.


Panels to be installed parallel to the roof surface. Note 5

"--" states NOT SUITABLE FOR INSTALLATION. Note 6

forests).

Terrain category definition according to section 4.2.1 of AS/NZS 1170.2:2021 as follows: Note 7 Terrain Category 2 (TC2) - Open terrain, including grassland, with well-scattered obstructions having heights generally from 1.5 m to 5 m, with no more than two obstructions per hectare (e.g. farmland and cleared subdivisions with isolated trees and uncut grass). Terrain Category 3 (TC3) - Terrain with numerous closely spaced obstructions having heights generally from 3 m to 10 m. The minimum density of obstructions shall be at least the equivalent of 10 house-size obstructions per hectare (e.g. suburban housing, light industrial estates or dense

Note 8 Wind regions are shown in Figure 3.1(B) of AS/NZS 1170.2:2021.

Note 9 Base interface spacing to be multiplied by all applicable reduction/increase factors. Factored spacing less than one third of the panel width are not satisfied. (NOT SUITABLE FOR INSTALLATION)

gamcorp

F	Relationships	built	on trust
CLENERGY AU	STRALIA		

Client:	CLENERGY AUSTRALIA	
Project:	Flush Array Frame System Spacing Table	Job: 13708
-	with ECO Rail - Tin Roof (Pierced Fix Roof)	Date: Oct-23
	with Fasteners - M8x150 hanger bolts or approved equivalent	Designed: JD
Addroces	within New Zealand	Chacked, IG

Note 10 Wind direction multiplier (Md), Shielding multiplier (Ms) and Hill shape multiplier (Mh) are taken as 1.0.

Refer section 4.4 of AS/NZS 1170.2:2021 for Lee multiplier (Mlee) and topographic multiplier (Mt). Note 11

Lee multiplier (Mlee) is taken as 1.0 except for WR NZ1&NZ2 with Mlee which is taken as 1.35 and 1.2 separately. Refer section 4.4.1 of AS/NZS 1170.2:2021 for topographic multiplier (Mt). See Note 24 for Lee zones map. Note 12

Note 13 The assessment includes the effect of earthquake loads. See note 26 for the fixing spacing determined by earthquake loads.

Note 14 Alpine regions are excluded for snow assessment. See note 25 for the fixing spacing determined by snow loads.

Note 15 Refer section 2.3 and Figure 2.2 of AS/NZS 1170.3:2003 for sub-alpine regions. Probability factor (kp) and Exposure reduction coefficient (Ce) are taken as 1.0 and Shape coefficient (μ i) is taken as 0.7. See Note 26 for sub-alpine regions map.

Maximum panel weight is limited to 15kg/m². Note 16

Note 17 Maximum panel width is limited to 1200mm.

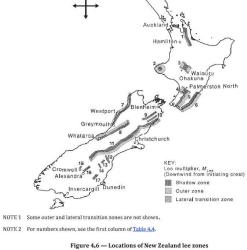
Maximum rail and panel width overhang is limited to the 40% of the allowable interface spacing. Note 18

PV panels clamping zone to be according to the manufacturer's specifications. Note 19

- Note 20 This certificate is applicable for the corrosion zones C1, C2, C3, C4 and C5. Correspondent roof interface must be used for each zone. Refer SNZ TS 3404:2018 for corrosion zones definitions.
- Note 21 This assessment is based on the capacity of the fixings of array frame to the structure and the array frame itself but not PV panel nor roof structures. Other building structures are deemed to be satisfactory. It is the responsibility of the installer to adopt the most critical spacing.

Note 22 Following reduction/increase factors to be applied to the base spacing for different type of tophat, purlin or batten or if timber screw embedment is reduced by using EZ-AD-C43 adaptor or fixing to smaller timber depth. In any case, it is not applicable for installation if the actual fixing spacing after applying spacing ratio is less than 300mm.

	Fixing	Туре				Spaci	ng Reduc	tion / Increase	
Purlin/Batten Material	Interfa ce	No. of screws	Purlin thickness (mm)	Min. Embedment (mm)	WR NZ1&NZ2	WR NZ1&NZ 2 with M _{lee} = 1.35	WR NZ1&NZ 2 with M _{lee =} 1.20	WR NZ3	WR NZ4
Timber F7 (Pine)	Tin	1	-	25	-23%	-23%	-23%	-23%	-23%
Timber F7 (Pine)	Tin	1	-	30	-6%	-6%	-6%	-6%	-6%
Timber F7 (Pine)	Tin	1	-	35	0%	0%	0%	0%	0%
Timber F17 (HW)	Tin	1	-	25	0%	0%	0%	0%	0%
Timber F17 (HW)	Tin	1	-	30	0%	0%	0%	0%	0%
Timber F17 (HW)	Tin	1	-	35	0%	0%	0%	0%	0%
Metal (G550)	Tin	1	0.42	-	-80%	-100%	-100%	-80%	-80%
Metal (G550)	Tin	1	0.48	-	-75%	-100%	-75%	-75%	-75%
Metal (G550)	Tin	1	0.55	-	-70%	-100%	-70%	-70%	-70%
Metal (G550)	Tin	1	0.75	-	-60%	-60%	-60%	-60%	-60%
Metal (G450)	Tin	1	1.2	-	-21%	-21%	21%	-21%	-21%
Metal (G450)	Tin	1	1.5	-	0%	0%	0%	0%	0%
Metal (G450)	Tin	1	1.9	-	0%	0%	0%	0%	0%
Metal (G450)	Tin	1	2.4	-	0%	0%	0%	0%	0%


Following reduction/increase factors to be applied to the base spacing for different panel lengths. Note 23 In any case, the actual fixing spacing after applying spacing ratio is limited to maximum 2000mm

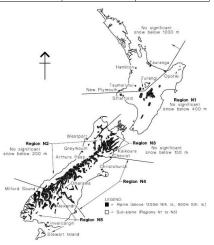
Panel Longth		Spacing Reduction / Increase					
Panel Length (mm)	No. of Rails	WR NZ1&NZ2	WR NZ1&NZ2 with M _{lee =} 1.35	WR NZ1&NZ2 with M _{lee =} 1.20	WR NZ3	WR NZ4	
	2	+4%	+6%	+5%	+4%	+4%	
1700	3	+6%	+19%	+13%	+11%	+10%	
	4	+6%	+24%	+13%	+11%	+10%	
	2	+3%	+4%	+3%	+3%	+2%	
1800	3	+6%	+17%	+13%	+11%	+10%	
	4	+6%	+24%	+13%	+11%	+10%	
	2	+1%	+2%	+2%	+1%	+1%	
1900	3	+6%	+15%	+13%	+11%	+10%	
	4	+6%	+24%	+13%	+11%	+10%	
	2	0%	0%	0%	0%	0%	
2000	3	+6%	+14%	+11%	+11%	+10%	
	4	+6%	+22%	+13%	+11%	+10%	
	2	-5%	-5%	-5%	-5%	-5%	
2100	3	+9%	+12%	+10%	+9%	+9%	
	4	+17%	+21%	+18%	+18%	+17%	
	2	-10%	-10%	-10%	-10%	-10%	
2200	3	+8%	+11%	+8%	+8%	+8%	
	4	+16%	+19%	+17%	+16%	+16%	
	2	-14%	-14%	-14%	-14%	-14%	
2300	3	+7%	+9%	+7%	+7%	+7%	
	4	+15%	+18%	+15%	+15%	+15%	
	2	-18%	-18%	-18%	-18%	-18%	
2400	3	+6%	+8%	+6%	+6%	+6%	
	4	+6%	+17%	+13%	+11%	+10%	

6	∃ gam	corp		CASE INTERNATIONAL ISO 3001:2015 REGISTERED COMPANY	C CLEAN ENERGY COUNCIL MEMBER	CONSULT AUSTRALIA
Client:	Relations	hips built on trust				""'Y Englandet ""
Project:	Flush Array Frame Syste	m Snacing Table			Job: 13708	
Troject.	with ECO Rail – Tin Roof				Date: Oct-23	
		hanger bolts or approve	d equivalent		Designed: JD	
Address:	within New Zealand				Checked: JG	
Note 24	Interface spacing to be redu	uced as follows for sites in w	ind regions NZ1 & NZ2 with Mlee ove	er 500m above s	ea level:	
	Site Elevation, E (m)	Spacing Reduction		N	57	
	E < 500	0%		↑	Jense	
	500 ≤ E < 700	-20%		\leftrightarrow		

Site Elevation, E (m)	Spacing Reduction
E < 500	0%
500 ≤ E < 700	-20%
700 ≤ E < 900	-24%
900 ≤ E < 1200	-31%
E ≥ 1200	N/A

North Island						
1 Kaimai						
2	Taranaki					
3	Ruapehu					
4	Tararua					
5	Tararua and Orongorongo					
6	Coastal Wairarapa					
	South Island					
7	West Coast North					
8	West Coast Alps					
9	Awatere					
10	Inland Kaikoura					
11	Southern Alps					
12	Hunter					
13	Hakataramea					
14	St Mary's					
15	Pisa					
16	Dunstan					
17	Rock and Pillar					

Note 25 Maximum Tin interface spacing in sub-alpine regions to be limited to follows for all roof zones must be checked separately before using these limitations).


			Maximum Interfa	ace Spacing (mm)	
Site Elevation, E (m)	No. of Rails	Snow Region N1	Snow Region N2&N3	Snow Region N4	Snow Region N5
	2				1775
E ≤ 100	3	N/A	N/A	N/A	1970
	4				2120
	2		1775	1490	1775
100 < E ≤ 200	3	N/A	1970	1705	1970
	4		2120	1860	2120
	2		1775	1390	1580
200 < E ≤ 300	3	N/A	1970	1590	1780
	4		2120	1740	1900
	2	N/A	1775	1285	1490
300 < E ≤ 400	3		1970	1470	1705
	4		2120	1620	1860
	2	1775	1500	1240	1410
400 < E ≤ 500	3	1970	1720	1415	1610
	4	2120	1870	1560	1775
	2	1490	1320	1160	1285
500 < E ≤ 700	3	1705	1510	1330	1470
	4	1860	1660	1460	1620
	2	1340	1200	1100	1195
700 < E ≤ 900	3	1535	1375	1260	1370
	4	1690	1515	1385	1510
	2	1195			
900 < E ≤ 1200	3	1370	N/A	N/A	N/A
	4	1510		'	,

2.3 NEW ZEALAND

- Alpine and sub-alpine regions are defined as follows:
- (a) N1 (southern portion of North Island of New Zealand, see Figure 2.2):
 - (i) Sub-alpine between 400 m and 1200 m.
- (ii) Alpine ≥1200 m.
- (b) N2 (South Island of New Zealand):
 - (i) Sub-alpine between 200 m and 900 m.
 - (ii) Alpine ≥900 m.
- (c) N3 (South Island of New Zealand):
 - (i) Sub-alpine between 150 m and 900 m.
 - (ii) Alpine ≥900 m.
- (d) N4 and N5 (South Island of New Zealand):
 - (i) Sub-alpine <900 m.
 - (ii) Alpine ≥900 m.

NOTE: This map is approximate only and altitude above mean sea level shall be used to determine snow region. For sub-alpine regions in the South Island (N2, N3, N4 and N5) the regions coincide with the 1988 county boundaries. Where an alpine region exists between sub-alpine regions, the alpine region separates the 2 sub-alpine regions (which extend downwards from 1200 m altitude).

FIGURE 2.2 NEW ZEALAND—APPROXIMATE LOCATIONS OF ALPINE AND SUB-ALPINE REGIONS

Relationships built on trust
CLENERGY AUSTRALIA
Flush Array Frame System Spacing Table

Project:	Flush Array Frame System Spacing Table
	with ECO Rail – Tin Roof (Pierced Fix Roof)
	with Fasteners - M8x150 hanger bolts or approved equivalent

Job: 13708 Date: Oct-23 Designed: JD Checked: JG

Address: within New Zealand

Client:

Note 26 Refer section 3.4.1 and Figure 2 of NZS 4219:2009 for zone factor (Z). Performance factor (Cp) is taken as 0.85 and Component risk factor (Rc) coefficient (Ce) is taken as 1.0 and High coefficient (Ch) is taken as 3. Maximum Tin roof interface spacing in Earthquake zone to be limited to follows for all roof zones.

		Maximum Interface Spacing (mm)					
Earthquake Factor, Z	No. of Rails	Max Panel Length	Max Panel Length	Max Panel Length	Max Panel Length	Max Panel Length	
		2000mm	2100mm	2200mm	2300mm	2400mm	
Z ≤0.13	2	2000	2000	2000	2000	2000	
2 50.13	3	2000	2000	2000	2000	2000	
0.13 < Z ≤0.15	2	2000	2000	2000	2000	1980	
	3	2000	2000	2000	2000	2000	
0.15 < Z ≤0.18	2	1980	1960	1935	1915	1895	
0.13 < 2 ≤0.18	3	2000	2000	2000	2000	2000	
$0.18 < Z \le 0.20$	2	1930	1905	1885	1865	1845	
0.18 < 2 ≤ 0.20	3	2000	2000	2000	2000	2000	
0.20 < Z ≤ 0.23	2	1865	1845	1820	1800	1775	
0.20 < 2 ≤ 0.23	3	2000	2000	2000	1995	1970	
0.23 < Z <0.26	2	1805	1780	1755	1730	1705	
0.23 < 2 ≤0.20	3	2000	1975	1955	1930	1910	
0.26 < Z ≤0.30	2	1725	1700	1675	1650	1625	
0.20 < 2 ≤0.30	3	1930	1905	1885	1865	1845	
$0.30 < Z \leq 0.35$	2	1640	1615	1590	1565	1545	
0.30 < 2 ≤ 0.33	3	1860	1835	1815	1795	1770	
0.35 < Z ≤ 0.40	2	1570	1545	1520	1500	1475	
0.55 < 2 ≤ 0.40	3	1795	1770	1740	1715	1690	
$0.40 < Z \leq 0.45$	2	1510	1485	1460	1440	1385	
0.40 < 2 ≤ 0.45	3	1725	1700	1675	1650	1625	
0.45 < Z ≤ 0.50	2	1455	1425	1360	1300	1245	
0.43 < 2 ≤ 0.30	3	1670	1640	1615	1590	1570	
0.50 < Z ≤ 0.55	2	1360	1295	1235	1180	1130	
0.30 < 2 ≤ 0.33	3	1615	1590	1565	1540	1520	
$0.55 < Z \le 0.60$	2	1245	1185	1130	1080	1035	
0.55 < 2 ≤ 0.00	3	1570	1545	1520	1500	1475	

Note:

The seismic assessment is based on the rail capacity and shear capacity of fixings.

Waipukura Taihape Marton Bulls Feilding Palmerston lor Dannevirke Woodville Pahiatua Foxton/F Beach

0.44

0.60

0.60

0.33

0.30

0.16

d'	Location	Z	#	Location
1	Kaitala	0.13	36	Taupo
2	Paihia/Russell	0.13	37	Taumarunui
3	Kaikohe	0.13	38	Turangi
4	Whangarei	0.13	39	Gisborne
5	Dargaville	0.13	40	Wairoa
6	Warkworth	0.13	41	Waitara
7	Auckland	0.13	42	New Plymo
8	Manakau City	0.13	43	Inglewood
9	Waluku	0.13	44	Stratford
10	Pukekohe	0.13	45	Opunake
11	Thames	0.16	46	Hawera
12	Paeroa	0.18	47	Patea
13	Waihi	0.18	48	Raetihi
14	Huntiy	0.15	49	Ohakune
15	Ngaruawahia	0.15	50	Waiouru
16	Morrinsville	0.18	51	Napier
17	Te Aroha	0.18	52	Hastings
18	Tauranga	0.20	53	Wanganui
19	Mount Maunganui	0.20	54	Waipawa
20	Hamilton	0.16	55	Waipukurau
21	Cambridge	0.18	56	Taihape
22	Te Awamutu	0.17	57	Marton
23	Matamata	0.19	58	Bulls
24	Te Puke	0.22	59	Feilding
25	Putaruru	0.21	60	Palmerston
26	Tokoroa	0.21	61	Dannevirke
27	Otorohanga	0.17	62	Woodville
28	Te Kuiti	0.18	63	Pahiatua
29	Mangakino	0.21	64	Fexton/Fox
30	Rotorua	0.24	526.0	Beach
31	Kawerau	0.29	65	Levin
32	Whakatane	0.30	66	Otaki
33	Opotiki	0.30	67	Walkanae
34	Ruatoria	0.33	68	Paraparaun
35	Murupara	0.30	69	Masterton

	z	#	Location	Z
	0.28	70	Porirua	0.40
	0.21	71	Wellington CBD	0.40
	0.27		(north of Basin	
	0.36		Reserve)	
	0.37	72	Wellington	0.44
	0.18	73	Hutt Valley - south of Taita Gorge	0.40
	0.18	74	Upper Hutt	0.43
	0.18	74	Eastbourne - Point	0.4
	0.18	75	Howard	0.44
	0.18	76	Wainuiomata	0.40
	0.18	77	Takaka	0.23
	0.19	78	Motueka	0.26
	0.26	79	Nelson	0.2
	0.27	80	Picton	0.30
	0.29	81	Blenheim	0.3
	0.38	82	St Arnaud	0.3
	0.39	83	Westport	0.30
	0.25	84	Reefton	0.3
	0.41	85	Murchison	0.34
	0.41	86	Springs Junction	0.45
	0.33	87	Hanmer Springs	0.55
	0.30	88	Seddon	0.40
	0.31	89	Ward	0.40
	0.37	90	Cheviot	0.40
th	0.38	91	Greymouth	0.3
	0.42	92	Kaikoura	0.43
	0.41	93	Harihari	0.4
	0.42	94	Hokitika	0.4
	0.36	95	Fox Glacier	0.4
		96	Franz Josef	0.4
	0.40	97	Otira	0.60
	0.40	98	Arthurs Pass	0.60
	0.40	99	Rangiora	0.60
	0.40	100	Darfield	0.3
	0.42	100	Akaroa	0.3

	#	Location	Z
0	102	Christchurch	0.22
40	103	Geraldine	0.19
	104	Ashburton	0.20
40	105	Fairlie	0.24
	106	Temuka	0.17
ю	107	Timaru	0.15
2	108	Mt Cook	0.38
10	109	Twizel	0.27
	110	Waimate	0.14
40	111	Cromwell	0.24
23	112	Wanaka	0.30
26	113	Arrowtown	0.30
7	114	Alexandra	0.21
10	115	Queenstown	0.32
3	116	Milford Sound	0.54
6	117	Palmerston	0.13
0	118	Oamaru	0.13
17	119	Dunedin	0.13
4	120	Mosgiel	0.13
45	121	Riverton	0.20
15	122	Te Anau	0.36
0	123	Gore	0.18
0	124	Winton	0.20
0	125	Balclutha	0.13
7	126	Mataura	0.17
2	127	Bluff	0.15
6	128	Invercargill	0.17
2	129	Oban	0.14

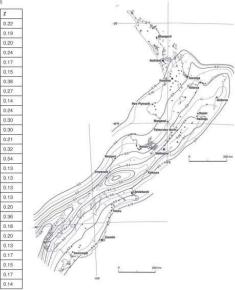


Figure 2 - Zone factor, Z

AGAINTERNATIONAL BOGODILZOIS RECEIVENT	C CLEAN ENERGY COUNCIL MEMBER	CONSULT AUSTRALIA
--	--	-------------------

Relationships built on trust
CLENERGY AUSTRALIA
Flush Array Frame System Spacing Table
with ECO Rail – Tin Roof (Pierced Fix Roof) with Fasteners - M8x150 hanger bolts or approved equivalent

Job: 13708 Date: Oct-23 Designed: JD Checked: JG

Address: within New Zealand

Note 27 Building height is average roof height of structure above ground. Refer Figure 1 for definition of h, d and b.

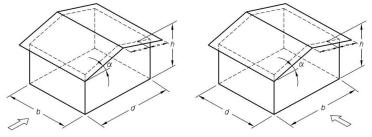
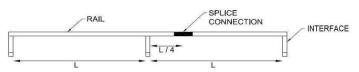



Figure 1 – h, d and b definition

Note 28 Rail splice connection must be placed at a quarter length of the spacing of interface. No Splice connection should be placed at the centre of spacing or over the interface.

Note 29 Refer Figure 2 for definition of roof zones. The smallest spacing to be used for panels fall between two (or more) roof zones.

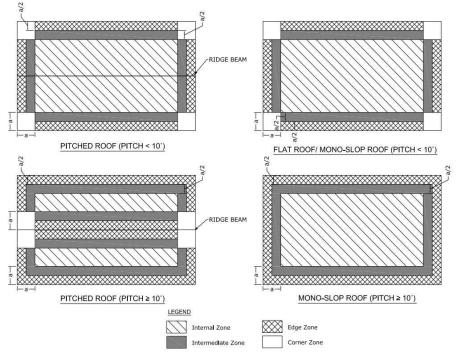


Figure2- Roof Zones Definition

In Figure 2, the value of dimension "a" is the minimum of 0.2b or 0.2d, if (h/b) or $(h/d) \ge 0.2$; or 2h if both (h/b) and (h/d) < 0.2 (b & d are building dimensions and h is average roof height, see Figure 1)

Note 30 Installation of solar array to be done in accordance with the relevant Clenergy PV installation manual. Contact Clenergy if you are unable to comply with any of the above installation specifications.

Job: **13708** Date: **Dec-99** Designed: **JD**

1

Checked: JG

Relationships built on trust CLENERGY AUSTRALIA

Client: Flush Array Frame System Spacing Table Project:

with ECO Rail – Tin Roof (Pierced Fix Roof) with Fasteners - M8x150 hanger bolts or approved equivalent Address: within New Zealand

	am		

 ${\sf S}_{\sf Z}$

 $S_{0.5} \\ S_{1.0}$

Example 1

mples		
Tin Roof		factor
Wind Region	NZ1	-
Terrain Category	2	-
Building Height	4m	-
h/d	0.75	-
Interface	ER-I-05	-
Panel Dimension	2m x 1m	1
No. of Rails	2	1
Purlin Thickness	1.5mm	1

Fixing spacing for h/d=z
$= S_{0.5} - [(S_{0.5} - S_{1.0}) / (1.0 - 0.5) \times (z - 0.5)]$
Fixing spacing for h/d=0.5
Fixing spacing for h/d=1.0

Roof Zone	Spacing, h/d=0.5
Internal Zone	1880 mm
Intermediate Zone	1615 mm
Edge Zone	1310 mm
Corner Zone	845 mm

Roof Zone	Spacing, h	n/d=1
Internal Zone	1640	mm
Intermediate Zone	1220	mm
Edge Zone	880	mm
Corner Zone	575	mm

Final factor

Γ

Fixing spacing for h/d=0.75, $S_{\rm 0.75}$ = $S_{\rm 0.5}$ - [($S_{\rm 0.5}$ – $S_{\rm 1.0}$) / (1.0 - 0.5) x (0.75 – 0.5)]

	Roof Zone	Spacing, h/	d=0.75	Roof Zone	Final Spacing-mm
	Internal Zone	1760	mm	Internal Zone	1760
	Intermediate Zone	e 1417.5	mm	Intermediate Zone	1415
	Edge Zone	1095	mm	Edge Zone	1095
	Corner Zone	710	mm	Corner Zone	710
				·	
xample 2	Tin Roof		factor		
	Wind Region	NZ2, with Mlee of 1.2	-	Final factor	0.9
	Terrain Category	3	-		
	Building Height	12m	-	Roof Zone	Final Spacing-mm
	h/d	1.2	-	Internal Zone	1180
	Interface	ER-I-05	-	Intermediate Zone	765
	Panel Dimension	1.75m x 1m	1.13	Edge Zone	565
	No. of Rails	3	1.13	Corner Zone	
	Purlin Thickness	1.9mm	1.00		1
	Site Elevation	600m	0.80		
	Sub-alpine Region	N2 (E=600m)	-		
xample 3	Tin Roof		factor		
	Wind Region	NZ3	-	Final factor	0.95
	Terrain Category	3	-	-	•
	Building Height	5m	-	Roof Zone	Final Spacing -mm
	h/d	0.5	-	Internal Zone	1490*
	Interface	ER-I-25	-	Intermediate Zone	1450
	Panel Dimension	2.1m x 1.1m	0.95	Edge Zone	1100
	No. of Rails	2	0.95	Corner Zone	715
	Purlin Thickness	2.4mm	1		
	Sub-alpine Region	N4 (E=200m))	*	(From Note 25, the maximum spacing is 14	190mm, which is determ
xample 4	Tin Roof		factor		
	Wind Region	NZ2, with Mlee of 1.2	-	Final factor	0.62
	Terrain Category	3	-		
	Building Height	12m	-	Roof Zone	Final Spacing-mm
	h/d	1.1	-	Internal Zone	815
	Interface	ER-I-05	-	Intermediate Zone	530
	Panel Dimension	2.4m x 1.1m	0.82	Edge Zone	390
	No. of Rails	2	0.82	Corner Zone	
	Purlin Thickness	1.9mm	1.00	L	
	Site Elevation	700 N5 (E=700m)	0.76		

(From Note 26, the maximum spacing is 1035mm, which is determined by earthquake)

Certificate User Guideline

Building Code Clause(s).B1

PRODUCER STATEMENT – PS1 – DESIGN

Gamco	orp Pty Ltd			
ISSUED BY:		(Design Firm)		
TO: Clenergy Australia				
		(Owner/Developer)		
TO BE SUPPLIED TO:	:	(Building Consent Authority)		
IN RESPECT OF: Clen	negy PV-ezRack SolarRoof Fl		t systems with ER-R-	ECO & ER-R-ELT Penetrative
AT: Within New Zealand	d			
		(Address)		
Town/City:	(Address)	от	DP	SO
We have been engaged	by the owner/developer refer	rred to above to provide	:	
top solar panel installati			the roof structure and	the array frame itself for roof
		(Extent of Engagement)		
services in respect of the	e requirements of Clause(s).	31	of the Building Cod	e for:
All or Part only (a	as specified in the attachmen	t to this statement), of th	ne proposed building	work.
	by us has been prepared in ac			
	ents issued by the Ministry of I		Employment	or
Alternative solution a	as per the attached schedule	refer Certification Letter system & <u>13708-02 (Ec</u>	(verification 13708-01(Eco Rail) o Rail) &13924-02(El	n method/acceptable solution) <u>& 13924-01(Elite Rail)</u> for Flush Mount <u>ite Rail)</u> for Tilt Mount system
On behalf of the Design (i) Site verification of the	cation, and other documents : In Firm, and subject to:	refer Certification Lett s Mount system & <u>1370</u>	attached to this stater ter <u>13708-01(Eco Ra</u> 08-02 (Eco Rail) &139	
documents provided or li the persons who have un construction monitoring/	listed in the attached schedule indertaken the design have th observation:	e, will comply with the re	elevant provisions of	ings, specifications, and other the Building Code and that b), ommend the following level of
I, L. Van Spaandonk (Name d	of Design Professional)	am: 🔳 CPE		
I am a member of: Er	ngineering New Zealand and	hold the following quality	fications:	ng NER APEC Engineer IntPE(Aus) CMEngNZ
The Design Firm issuing The Design Firm is a me	g this statement holds a curre ember of ACE New Zealand:	nt policy of Professiona	I Indemnity Insurance	e no less than \$200,000*. -
SIGNED BY L. Van Spa			(Signature)	
	(Name of Design Profes	ssional)	,	
ON BEHALF OF	corp Pty Ltd (Design Firm)			08/05/2024 Date.
Design Firm only. The total		ayable arising from this sta	atement and all other sta	this statement accrues to the atements provided to the Building is limited to the sum of \$200,000*.
	ony Form 2 of the Building			

GUIDANCE ON USE OF PRODUCER STATEMENTS

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task committee consisting of members of the New Zealand Institute of Architects, Institution of Professional engineers New Zealand (now Engineering New Zealand), ACE New Zealand in consultation with the Building Officials Institute of New Zealand. The original suit of producer statements has been revised at the date of this form as a result of enactment of the Building Act (2004) by these organisations to ensure standard use within the industry.

The producer statement system is intended to provide Building Consent Authorities (BCAs) with reasonable grounds for the issue of a Building Consent or a Code Compliance Certificate, without having to duplicate design or construction checking undertaken by others.

PS1 Design Intended for use by a suitably qualified independent design professional in circumstances where the BCA accepts a producer statement for establishing reasonable grounds to issue a Building Consent;

PS2 Design Review Intended for use by a suitably qualified independent design professional where the BCA accepts an independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

PS3 Construction Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 or Schedules E1/E2 of NZIA's SCC 2011²

PS4 Construction Review Intended for use by a suitably qualified independent design professional who undertakes construction monitoring of the building works where the BCA requests a producer statement prior to issuing a Code Compliance Certificate.

This must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACE New Zealand and Engineering New Zealand to interpret the Producer Statement.

Competence of Design Professional

This statement is made by a Design Firm that has undertaken a contract of services for the services named, and is signed by a person authorised by that firm to verify the processes within the firm and competence of its designers.

professional will Α competent design have а professional qualification and proven current competence through registration on a national competence based register as Chartered Professional а Engineer (CPEng).

Membership of a professional body, such as Engineering New Zealand (formerly IPENZ) provides additional assurance of the designer's standing within the profession. If the design firm is a member of ACE New Zealand, this provides additional assurance about the standing of the firm.

Persons or firms meeting these criteria satisfy the term "suitably qualified independent design professional".

*Professional Indemnity Insurance

As part of membership requirements, ACE New Zealand requires all member firms to hold Professional Indemnity Insurance to a minimum level.

The PI Insurance minimum stated on the front of this form reflects standard, small projects. If the parties deem this inappropriate for large projects the minimum may be up to \$500,000.

Professional Services during Construction Phase

There are several levels of service which a Design Firm may provide during the construction phase of a project (CM1-CM5 for Engineers³). The Building Consent Authority is encouraged to require that the service to be provided by the Design Firm is appropriate for the project concerned.

Requirement to provide Producer Statement PS4

Building Consent Authorities should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the time the building consent is issued as no design professional should be expected to provide a producer statement unless such a requirement forms part of the Design firm's engagement.

Attached Particulars

Attached particulars referred to in this producer statement refer to supplementary information appended to the producer statement.

Refer Also:

- Conditions of Contract for Building & Civil Engineering Construction NZS 3910: 2013
- ² NZIA Standard Conditions of Contract SCC 2011
 - Guideline on the Briefing & Engagement for Consulting Engineering Services (ACE New Zealand/Engineering New Zealand 2004)
- ⁴ PN Guidelines on Producer Statements

www.acenz.org.nz www.engineeringnz.org

🛟 PV-ezRACK®

Clenergy

3/10 Duerdin St Clayton VIC 3168 Australia

Phone: +61 3 9239 8088 Email: sales@clenergy.com.au Web: www.clenergy.com.au

f @ClenergyGlobal / @ClenergyClub / ClenergyAUS 📀 @Clenergy 🞯 @ClenergyClub 🚫 @Clenergy_global 🛛 💼 @Clenergy

A Clenergy Technologies Company