

SolarRoof Penetrative Tilt Mounting with Elite Rail

Code-Compliant Planning and Installation Guide V 2.0 (New Zealand) Complying with AS/NZS 1170.2-2021

Disclaimer

The document you have accessed is provided for general informational purposes only. While we strive to ensure the accuracy and relevance of our documents, we acknowledge that search engines may occasionally return outdated or incorrect results. Therefore, we strongly recommend that customers refer directly to the official Clenergy website for the most up-to-date and country-specific documents.

This document should only be used as a last resort if no country-specific document is available on the respective Clenergy website. If the document does not comply with the content or standards of national legal documents, the national legal documents shall take precedence. Clenergy bears no responsibility for any inaccuracies, errors, or discrepancies that may arise from the use of this document in lieu of official, country-specific guidance and does not warrant the up-to-dateness, correctness, completeness, or quality of the information provided.

For the latest and most accurate information, please visit the Clenergy website corresponding to your country of residence or installation. If you have any questions or concerns regarding the information provided herein, please contact Clenergy at communications@clenergy.com.

Introduction

The Clenergy PVezRack® SolarRoof Tilt Legs has been developed as a universal PV-mounting system for roof-mounting on pitched and flat roofs. The use of patented aluminium base rails, Z-Module technology and telescopic mounting technology eliminates custom cutting and enables fast installation.

Please review this manual thoroughly before installing PVezRack® SolarRoof Tilt Legs.

This manual provides:

- 1) Supporting documentation for building permit applications relating to PVezRack® SolarRoof Tilt Legs Universall PV Module Mounting System,
- 2) Planning and installation instructions.

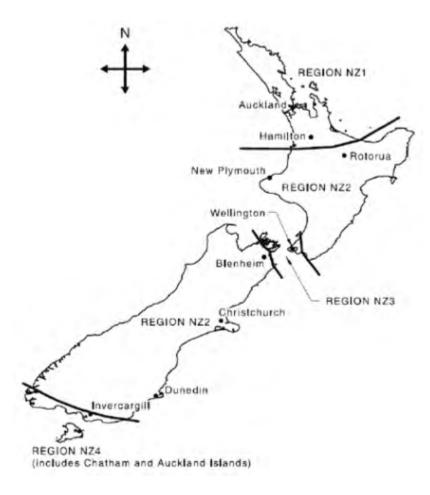
List of contentsIntroduction01Planning02 - 14Tools & Components15System Overview16 - 19Installation Instruction20 - 23Certification24Certificate User Guideline50

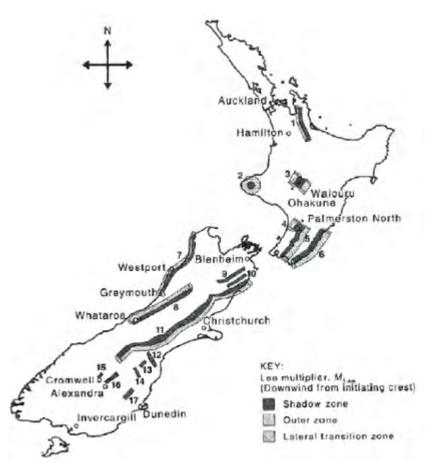
The PVezRack® SolarRoof Tilt Legs parts, when installed in accordance with this guide, will be structurally sound and will meet the AS/NZS 1170.2 - 2021 standard. During installation, and especially when working on the roof, please comply with the appropriate Occupational Health and Safety regulations. Please also pay attention to any other relevant State or Federal regulations. Please check that you are using the latest version of the Installation Manual, which you can do by contacting Clenergy Australia via email on sales@clenergy.com.au, or contacting your local distributor in New Zealand.

Product Warranty:

Please refer <u>PVezRack® Product Warranty</u> on our website

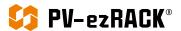
The installer is solely responsible for:

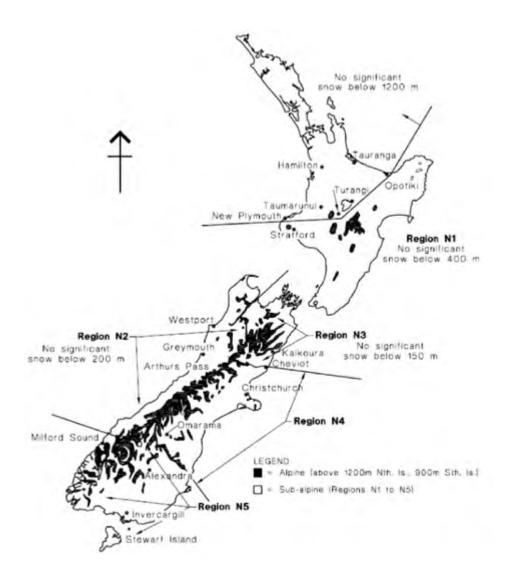

- Complying with all applicable local or national building codes, including any updates that may supersede this manual;
- Ensuring that PV-ezRack and other products are appropriate for the particular installation and the installation environment;
- Using only PV-ezRack parts and installer-supplied parts as specified by PV-ezRack project plan (substitution of parts may void the warranty and invalidate the letter of certification);
- Recycling: Recycle according to the local relative statute:
- · Removal: Reverse installation process;
- Ensuring that there are no less than two professionals working on panel installation;
- Ensuring the installation of related electrical equipment is performed by licenced electricians;
- Ensuring safe installation of all electrical aspects of the PV array, This includes adequate earth bonding of the PV array and PVezRack® SolarRoof components as required in AS/NZS 5033: 2021;
- Ensuring that the roof, its rafters/purlins, connections, and other structural support members can support the array under building live load conditions;
- Ensuring that screws to fix interfaces have adequate pullout strength and shear capacities as installed;
- Maintaining the waterproof integrity of the roof, including selection of appropriate flashing;
- Verifying the compatibility of the installation considering preventing electrochemical corrosion between dissimilar metals. This may occur between structures and the building and also between structures, fasteners and PV modules, as detailed in AS/NZS 5033: 2021;
- Verifying atmospheric corrosivity zone of installation site by referring to SNZ TS 3404:2018 or consulting local construction business to determine appropriate products and installations.


Planning

Determine the wind region of your installation site

Wind regions map below shows 4 different wind regions in New Zealand: NZ1, NZ2, NZ3 and NZ4.


The lee (effect) multiplier (M1ee) shall be evaluated for New Zealand sites in the lee zones below. In wind regions of NZ1 and NZ2 with M1ee over 500 m above sea level, the interface spacing reduction is applied. Please refer to note 25 of engineering certificate.



Locations of New Zealand lee Zones

For installation sites located in Sub-alpine Regions (shown on the map below), please refer to Note 26 of engineering certificate for maximum interface spacing and see "Examples" in certificate to understand how to use maximum spacing in Sub-alpine Regions.

If your installation site is in Alpine regions, please contact Clenergy to obtain a project specific engineering certificate to support your installation.

New Zealand - Approximate Locations of Alpine and Sub-alpine Regions

Determine the Terrain Category

It requires to determine the right terrain category to ensure the installation meets the maximum interface spacing specified in the engineering certificate.

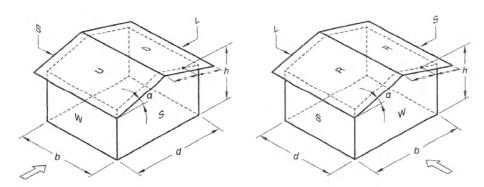
Terrain Category 1 (TC1) – Very exposed open terrain with very few or no obstructions, and all water surfaces (e.g. flat, treeless, poorly grassed plains; open ocean, rivers, canals, bays and lakes).

Terrain Category 2 (TC2) – Open terrain, including grassland, with well-scattered obstructions having heights generally from 1.5 m to 5 m, with no more than two obstructions per hectare (e.g. farmland and cleared subdivisions with isolated trees and uncut grass).

Terrain Category 3 (TC3) – Terrain with numerous closely spaced obstructions having heights generally from 3 m to 10 m. The minimum density of obstructions shall be at least the equivalent of 10 house-size obstructions per hectare (e.g. suburban housing, light industrial estates or dense forests).

Terrain Category 4 (TC4) – Terrain with numerous large, high (10 m to 30 m tall) and closely spaced constructions, such as large city centres and well-developed industrial complexes.

If your installation site is not at TC 2 or 3, please contact Clenergy to obtain a project specific engineering certificate to support your installation.


Verify Atmospheric Corrosivity Zone of Installation Site

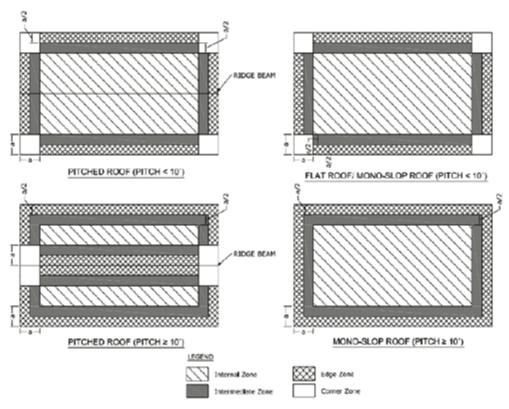
Please refer "SNZ TS 3404:2018 Durability Requirements for Steel Structures and Components" or consult local construction business to verify corrosivity category of installation site to determine appropriate corrosivity class roof interface screw.

Determine Building Dimension

This document provides sufficient information for the PVezRack® SolarRoof system installation up to 20 meters building height (average roof height of structure above the ground, see the diagram below). If your building is more than 20 meters high, please contact Clenergy to obtain project specific engineering certificate to support your installation.

Building horizontal dimensions (b and d) are required to calculate the ratio of h/d to determine maximum interface spacing.

Parameters for Rectangular Enclosed Buildings


Determine Roof slope and Tilt Leg Angle

The PVezRack® SolarRoof Tilt Legs system is suitable for rails running perpendicular to the roof slope (including standard and reverse tilt), and slope up to 10° for rails running parallel to the roof slope.

Determine the Installation Area of Roof

There are 4 different roof zones for tilt leg installation: Internal Zone, Intermediate Zone, Edge Zone and Corner Zone. Please see diagrams and steps below to define area of each zone.

- Step 1. Determine building height (h), width (b) and length (d) see diagram above;
- **Step 2.** The lowest value between "b x 0.2" and "d x 0.2 is "a" if h/b or h/d \geq 0.2;
- Step 3. "a" equates to 2h, If both h/b and h/d < 0.2,

Roof Zones Definition

Verify Purlin Properties of Building

Please verify purlin properties of building, which could affect the interface spacing. Tilt legs spacing on in the certification letter is based on steel purlin G450 1.5 mm thick or 35 mm Timber F7 (Pine). For example, if the steel purlin is less than 1.5 mm thick, the corresponding reduction factor of interface spacing could be applied. Please refer to generic note 22 of engineering letter for details.

Determine Two Screws or One Screw Installations of Tilt Legs

There are options of using two screws or one screw for installations of adjustable and fixed tilt legs, depending on the project scenario, such as required interface spacing, purlin spacing, rib spacing of roof sheet and so on. Please find note 22 of engineering letter for details.

Determine the Maximum Rail Support Spacing

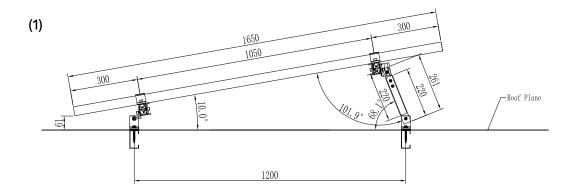
Please refer to the Certification Letter and Tilt Legs Spacing Table. If a project specific Certification Letter has been provided, please refer to the support spacing in this letter.

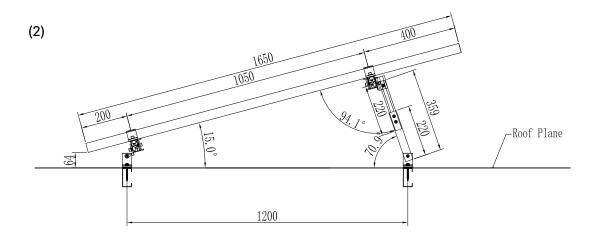
Verify Maximum Rail End Overhang

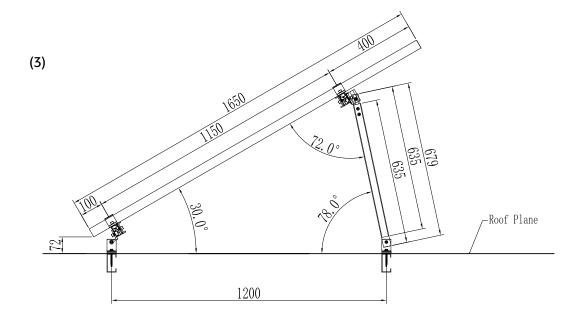
Rail end overhang should not be over 40% of the Tilt Legs spacing. For example, if the Tilt Legs spacing is 1500mm, the Rail end overhang can be up to 600mm only.

The application of Adjustable Tilt Legs

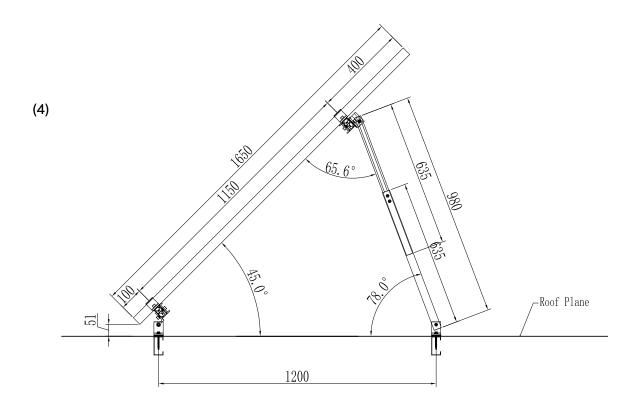
Following the tilt angle rules of Determine Roof Slope and Tilt Leg Angle on the north or south facing roof, the actual panel tilt angles using the adjustable tilt legs installed at the different purlin spacing could be applicable or not. Please see the table and side view diagrams below.

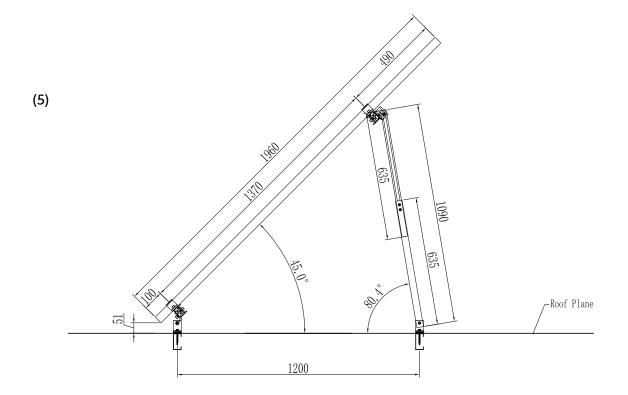

		Į.	Appli	catio	on of	Adju	ıstab	ole Ti	lt Le	gs						
Purlin spa	acing		12	200 m	m			14	l00 m	m			17	700 m	m	
	Product	10°	15°	30°	45°	60°	10°	15°	30°	45°	60°	10°	15°	30°	45°	60°
	ER-TL-10/15	√ (1)	√ (2)	×	×	×	√ (6)	×	×	×	×	×	×	×	×	×
1650 mm panel in portrait	ER-TL-15/30	×	×	×	×	×	×	√ (8)	×	×	×	×	×	×	×	×
	ER-TL-30/60	×	×	√ (3)	√ (4)	×	×	×	√ (10)	√ (12)	×	×	×	√ (14)	×	×
	ER-TL-10/15	×	×	×	×	×	√ (7)	×	×	×	×	×	×	×	×	×
1960 mm panel in portrait	ER-TL-15/30	×	×	×	×	×	×	√ (9)	×	×	×	×	×	×	×	×
	ER-TL-30/60	×	×	×	√ (5)	×	×	×	√ (11)	√ (13)	×	×	×	√ (15)	×	×

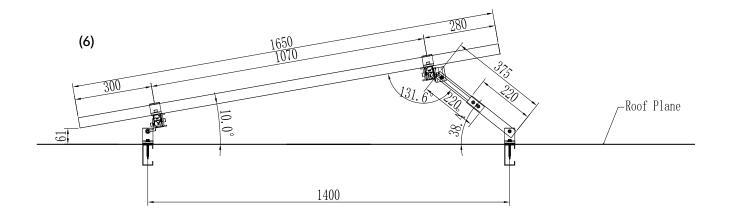

Note: √ indicates applicable; × indicates not applicable

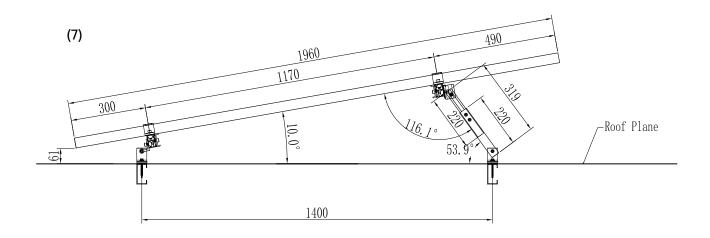

The table above is based on:

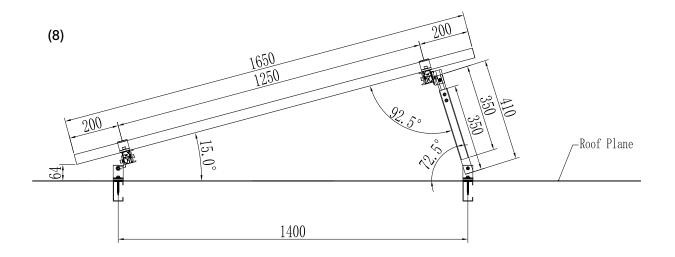
- 1. The panels are clamped within one quarter of panel length;
- 2. Rear leg adjustable range: ER-TL-10/15: 260-375 mm; ER-TL-15/30: 390-635 mm; ER-TL-30/60: 675-1205 mm;
- 3. If the info. is different from the table and diagram, it could have different results. Please contact the Clenergy to confirm its applicability.

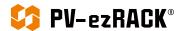


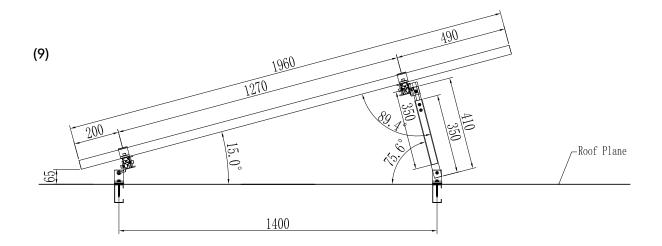


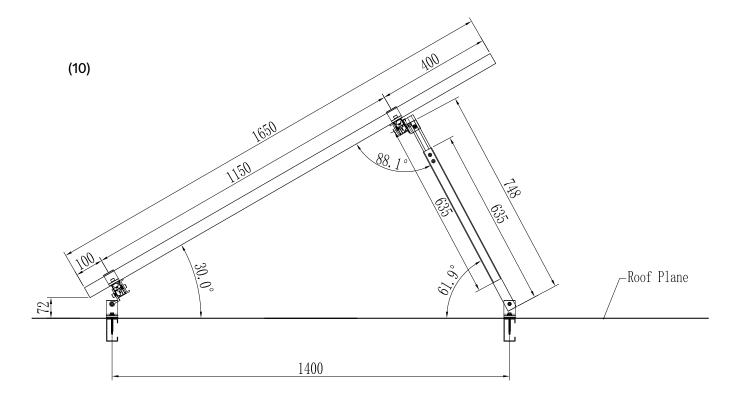


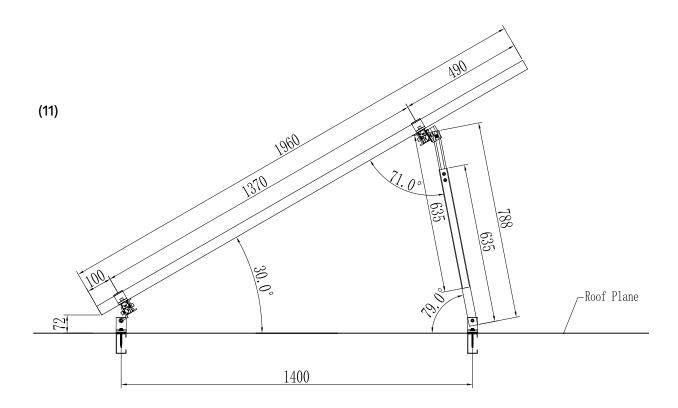


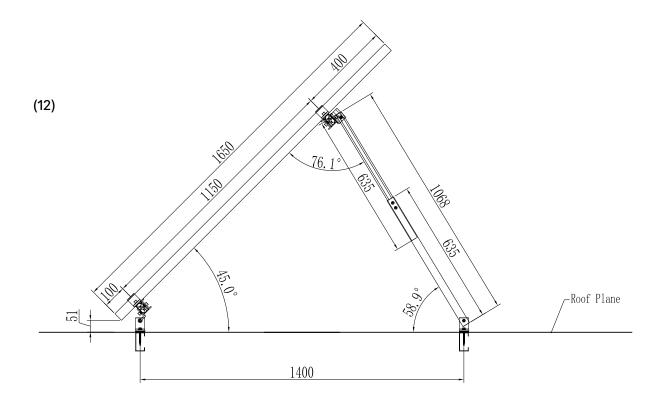


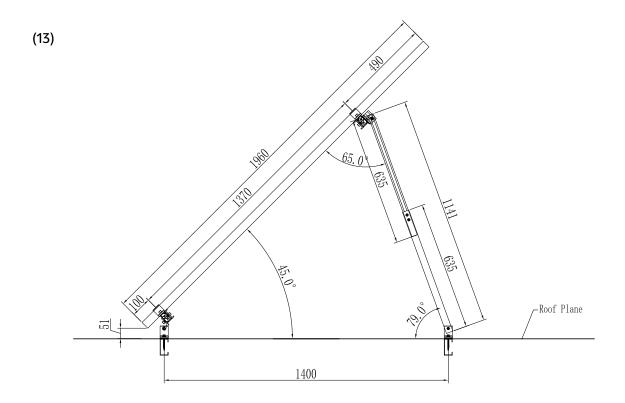


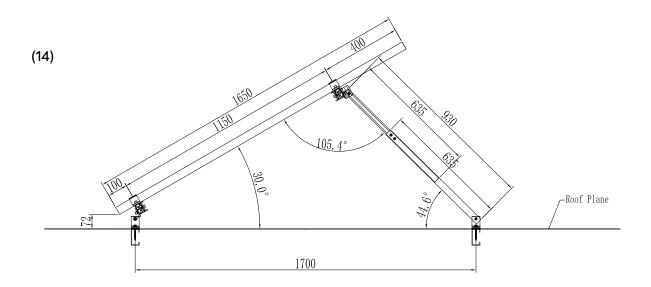


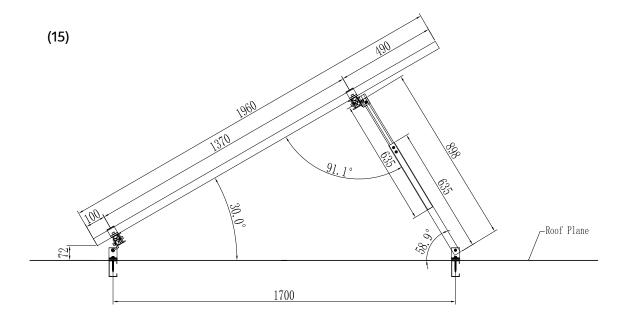


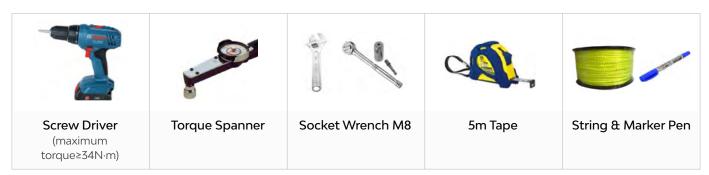


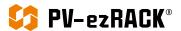











Tools and Components

Tools

Components

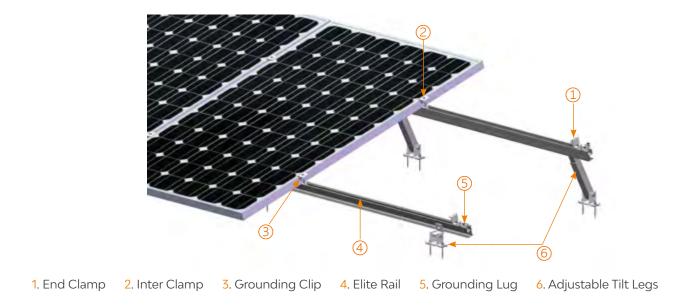


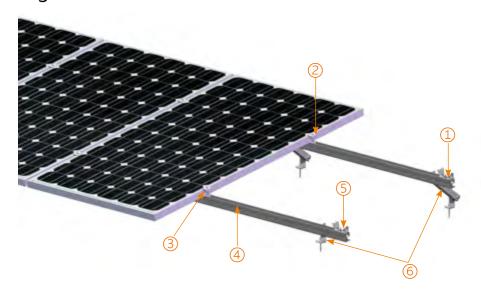
System Overview

Overview of PVezRack® SolarRoof

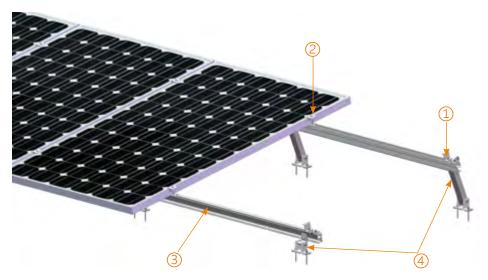
Tile Interface

1. End Clamp 2. Inter Clamp 3. Elite Rail 4. Tile interface


Tin Interface

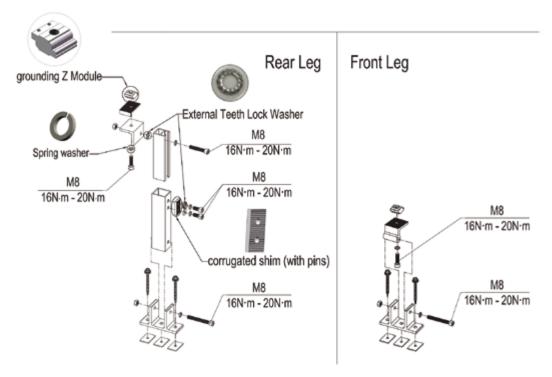

1. End Clamp 2. Inter Clamp 3. Elite Rail 4. Tin interface

Adjustable Tilt Legs


Adjustable Tilt Legs with L-feet

3. Grounding Clip 4. Elite Rail 5. Grounding Lug 6. Adjustable Tilt Legs with L-feet 1. End Clamp 2. Inter Clamp

Fixed Tilt Legs

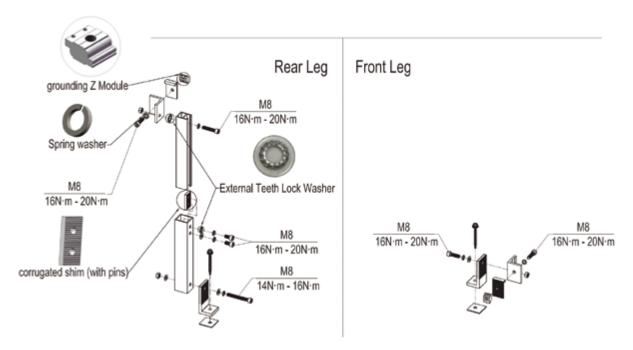


1. End Clamp 2. Inter Clamp 3. Elite Rail 4. Fixed Tilt Legs

Safe Torques

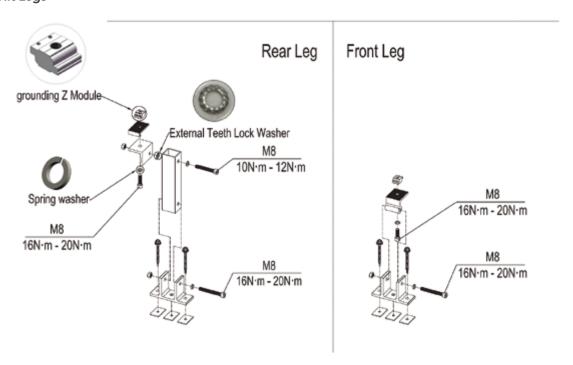
Please refer to safe torques defined in this guide as shown in the figure below. If power tools are required, Clenergy recommends the use of low speed only. High speed and impact drivers increase the risk of bolt galling (deadlock). If deadlock occurs and you need to cut fasteners, please make sure that there is no load on the fastener before you cut it. Avoid damaging the anodized or galvanized surfaces.

1) Adjustable Tilt Legs



Note:

Grounding Z Module, External Teeth Lock Washers, Spring washer and corrugated shim (with pins) on the diagram above are to create the electrical continuity between rail and rear leg tubes.


2) Adjustable Tilt Legs with L-feet

Note:

Grounding Z Module, External Teeth Lock Washers, Spring washer and corrugated shim (with pins) on the diagram above are to create the electrical continuity between rail and rear leg tubes.

3) Fixed Tilt Legs

Note:

Grounding Z Module, External Teeth Lock Washer and Spring washer on the diagram above are to create the electrical continuity between rail and rear leg tubes.

Installation Instructions

Front & Rear Leg Installation

Front Leg Installation

According to the installation plan, determine the mounting position and direction of the front legs. Either two screws or single screw (Buildex 14-11 x 70 Hex Head Zips screw) is required depending on the installation spacing requirement. See two screws and single screw options in Figures 1 and 2. Tin foot front leg installation is in Figure 3.

Figure 1 (Front Leg Installation with Two Screws)

Figure 2 (Front Leg Installation with Single Screw)

Figure 3 (Tin Foot Front Leg Installation)

Notes:

- 1. Two screws shall be installed through two side holes of front leg (as shown in Figure 1);
- 2. Single screw shall be installed through central hole only of front leg (as shown in Figure 2).

Please follow Buildex screws installation guide below:

- Use a 3/8" Hex Socket.
- Use a mains powered or cordless screw driver with a drive speed of 3,000 RPM maximum.
- Fit the driver bit into the screw and place at the fastening position.
- Apply consistently firm pressure (end load) to the screw driver until the screw is fastened.
- Screws with bonded washers should be tightened only until the washer is gripped firmly enough to provide a watertight seal. The screws should be neither under tightened nor over tightened to lead to water penetration. Take particular care to ensure the screw is driven perpendicular to the interface to avoid deformation of the washer.

Rear Leg Installation

According to the installation plan, after confirming the length L of the Rear Leg, fasten two M8*12 bolts as shown in Figure 4.

Recommended torque for M8*12 bolts is 18~20 N·m

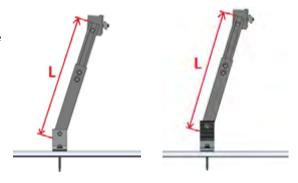


Figure 4

According to the installation plan, either two screws or single screw (Buildex 14-11 x 70 Hex Head Zips screw) is used to install rear leg. Using preassembly or non-preassembly rear legs will make installation steps a bit different as well. See the installation images in Figures 5-9.

Figure 5 (Non-preassembly Rear Leg Installation with Two Screws)

Figure 6 (Non-preassembly Rear Leg Installation with Single Screw)

Figure 7

(Preassembly Rear Leg Installation with Two Screws)

Figure 8 (Preassembly Rear Leg Installation with Single Screw)

Figure 9 (Tin Foot Rear Leg Installation)

Notes:

- 1. Two screws shall be installed through two side holes of rear leg (as shown in Figures 5 and 7);
- 2. Single screw shall be installed through central hole only of rear leg (as shown in Figures 6 and 8).

Install the remaining Front and Rear Legs in Figure 10.

NOTE:

WHEN USING TIN INTERFACES FOR INSTALLATION WORKS, SCREWS NOT EXPOSED TO FREQUENT RAIN SHOULD BE WASHED DOWN WITH FRESH WATER AT LEAST EVERY 6 MONTHS TO MEET THE WARRANTY CONDITIONS OF BUILDEX SCREWS.

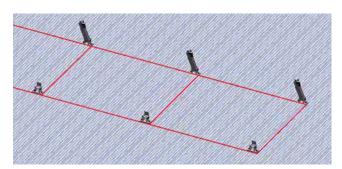
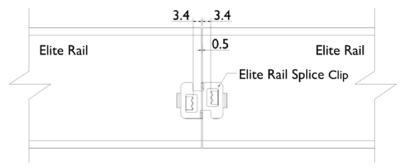


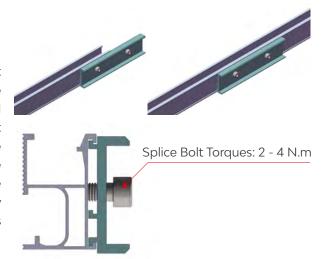
Figure 10

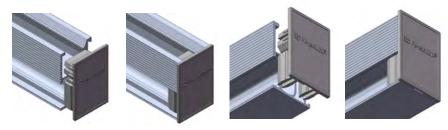
Rail Installation


Option 1: Using Elite Rail Splice (ER-SP-ELT)


To connect several rails together, slide half of the splice into the rear side of the rail. The connection clip of splice can make selflocking with the rail without using any tool. Slide the next rail into the splice to complete two rails connection. The sharp teeth of connection clip of splice can provide the earthing continuity between two rails. This eliminates the need of using 2 grounding lugs.

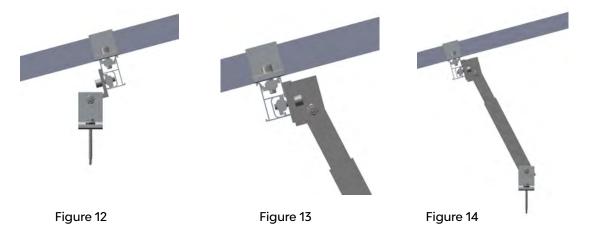
Elite-rail installation with Elite rail splice Figure 11


In case of requiring rails cutting to be joined by Elite rail splice, please make sure cutting as straight as possible to avoid splice clip teeth mistouching rails. It is because after installation it is just 3.4 mm from the rail end to the clip teeth as shown in the diagram.



Option 2: Using ECO Rail Splice (ER-SP-ECO)

ECO rail splice can be used for connecting Elite rails. To connect several rails together, slide half of the splice into the rear side of the rail. Fasten the first M8 bolt with torque of 2 ~ 4 Nm and slide the next rail into the splice and fasten the second M8 bolt with torque of 2 ~ 4 Nm. The low torque is not to impact the structural integrity of the system as the defined 2 ~ 4 N.m. Torque is sufficient to secure the required positioning of the splice for the design life of the system, and can provide the earthing continuity between two rails through the bolts and splice. This eliminates the need of using 2 grounding lugs.



Elite-rail installation with ECO rail splice

When installating Elite rail end cap, align the cap with the end of the Elite rail and firmly press and secure it in place.

After confirming the position of Rail, fasten the Front and Rear Leg, as shown in Figure 12, 13 and 14. Recommended torque for M8 bolts is 18~20 N·m

PV Module Installation

- 1) Please refer <u>PVezRack® Grounding System</u> for PV modules clamps and grounding lugs installations.
- 2) The installers must ensure panel clamps are installed flush mounted to the panel frame and apply correct torque value of clamp fastener as shown in section "Safe Torques (P18)".

Certification

PV Array Frame Engineering Certification

PV-ezRack SolarRoof Tilt Mount Penetrative Fixing System with ELITE Rail in New Zealand

> For: Clenergy Australia Suite 1, 10 Duerdin St Clayton, VIC 3168

Job No.: 13924 Date: 08/05/2024

Document Control Record

A person using Gamcorp document or data accepts the risk of:

- a. Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version
- b. Using the documents or data for any purpose not agreed to in writing by Gamcorp.

Document Cor	ntrol								
Report Title		General Certifi	cate-Tilt Mour	nt System-ELI	ΓE rails				
Document ID		13924-02-CER	/JD	Job No.	13924				
File Path		G:\Shared driv	res\13924\13	900 - 13999\1	3924\03 CER	TIFICATION			
Client		Clenergy Austr	alia	Client Contact	Tim Weng				
Rev	Date	Revision Details	Prepared By	Author	Approver				
0	08/11/2023	Rev.1 of 13708-04	JD	JD	JG	JG			
1	08/05/2024	ELITE rail splice added	JD	JD	BL	LvS			
Current Revis	ion	1							

Approval			
Author Signature	M	Approver Signature	
Name	Jiewen Deng	Name	L. Van Spaandonk
Title	Structural Engineer	Title	Principal Engineer

COPYRIGHT: The concepts and information contained in this document are the property of Gamcorp Pty Ltd. Use or copying of this document in whole or in part without the written permission of Gamcorp constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of Gamcorp Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Gamcorp Pty Ltd and its Client. Gamcorp Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Our Ref:13924-2/JD 08 May 2024

Clenergy Australia Suite 1, 10 Duerdin St Clayton, VIC 3168

PV Array Frame Engineering Certification

<u>PV-ezRack SolarRoof Tilt Mount Penetrative Fixing System with ELITE Rail in</u> New Zealand

Gamcorp Pty Ltd, being Structural Engineers within the meaning of Australian and New Zealand Building Regulations, have carried out a structural design check of Clenergy PV-ezRack SolarRoof Tilt Mount System installation with penetrative fixing within New Zealand. The design check has been based on the information and test reports provided by Clenergy Australia.

This certificate is **only valid** for Clenergy PV-ezRack SolarRoof. The roof structure or the building structure and PV panels shall be assessed separately and accordingly.

This certificate is **only valid** as a whole. Any information extracted from this certificate is not valid if standing alone.

We find the Installation of Clenergy PV-ezRack SolarRoof Flush Mount System for New Zealand use to be structurally sufficient based on the following conditions:

- Loading to:
 - AS/NZS1170.0:2002 Structural design actions, Part 0: General principles;
 - AS/NZS1170.1:2002 (R2016) Structural design actions, Part 1: Permanent, imposed and other actions;
 - AS/NZ1170.2:2021 Wind actions;
 - AS/NZ1170.3:2003 Snow and ice actions;
 - NZS 4219:2009 Seismic performance of engineering systems in buildings.
- Corrosion calculation for corrosion zone C1 C5 refer to
 - ISO 9223:2012-Corrosion of metals and alloys Corrosivity of atmospheres -Classification, determination and estimation
 - ISO 9224:2012-Corrosion of metals and alloys Corrosivity of atmospheres -Guiding values for the corrosivity categories
 - ISO 9226:2012-Corrosion of metals and alloys Corrosivity of atmospheres -Determination of corrosion rate of standard specimens for the evaluation of corrosivity

- Importance level 2; Design life 25 years
 Wind average recurrence interval of 250 years
 Snow average recurrence interval of 50 years
- Wind region NZ1 to NZ4
- Snow region
 - Sub-alpines (Regions N1 to N5)
 - Alpine regions are excluded for snow assessment
- Wind terrain category 2 & 3
- Maximum building height 20m
- The assessed base PV panel dimensions are 2000mm x 1000mm
- Tilt angle is measured to the roof surface
- Maximum wind pressure is limited to 5kPa
- Maximum Weight of the PV panels to be 15 kg/m²
- Rails to be ELITE Rail
- The base interface spacing is according to fixing into minimum 1.5BMT steel or minimum 35mm embedment into JD4 seasoned timber (2 screws per each interface)

10:314331 MARINE

- The interface spacing chosen for installation must be the **minimum value** in the attached table, which are determined by earthquake, snow and wind loads
- Each PV panel to be installed using 2 rails minimum in all circumstances
- No PV panel to be installed within 2xs from edges and ridge. "s" is the maximum gap between the underside of the panel and the roof surface when installed on the roof (50mm≤s≤300mm)
- Installation of PV panels to be done in accordance with the PV panels installation manual
- The certification **excludes** assessment of roof structure and PV panels

Refer to attached summary table for interface spacing (Unit: mm)

NOTES:

- The recommended spacing nominated in this certification is based on the capacity of the array frame and the fixing of array frames to the roof, not the roof structure and PV panels. It is the responsibility of the installer to adopt the most critical spacing.
- The spacing shown in the interface tables shall be adjusted based on the assessment and requirement of the roof structures.
- If any of the above conditions cannot be met, the structural engineer must be notified immediately.

Construction is to be carried out strictly in accordance with the manufacturer's instructions. This work was designed by **Jiewen Deng** in accordance with the provisions of relevant Building Regulations and in accordance with sound, widely accepted engineering principles. This certificate is only valid till 08/05/2026. Gamcorp should be contacted for future validation. Contact Gamcorp for customised system or if the site conditions are not covered by this assessment.

Yours faithfully, Gamcorp Pty Ltd

L. Van Spaandonk

Principal Engineer

CMEngNZ 2003796 FIEAust CPEng NER APEC Engineer IntPE(Aus)

Relationships built on trust

Gamcorp Pty Ltd A.C.N 665 643 658 A.B.N 86 665 643 658 www.gamcorp.com.au melbourne@gamcorp.com.au 37 Butler St, Richmond VIC 3121 Tel: 03 9543 2211

Structural Design Documentation

Tilt Array Frame System Spacing Table

According to AS/NZS 1170.2-2021

with ELITE Rails – Tin Roof (Pierced Fix Roof)
within New Zealand
Terrain Category 2 & 3

For: CLENERGY AUSTRALIA

1/10 Duerdin St Clayton, VIC 3168

Job Number: 13924 (ELITE Rails & Tilt)

Date: 7 May 2024

COPYRIGHT: The concepts and information contained in this document are the property of Gamcorp Pty Ltd. Use or copying of this document in whole or in part without the written permission of Gamcorp constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of Gamcorp Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Gamcorp Pty Ltd and its Client. Gamcorp Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Relationships built on trust

Gamcorp Pty Ltd A.C.N 665 643 658 A.B.N 86 665 643 658 www.gamcorp.com.au melbourne@gamcorp.com.au 37 Butler St, Richmond VIC 3121 Tel: 03 9543 2211

Job No: 13924

Client: CLENERGY AUSTRALIA

Project: Tilt Array Frame System Spacing Table

with ELITE Rails - Tin Roof (Pierced Fix Roof)

Address: within New Zealand

Wind Terrain Category: Terrain Category 2 & 3

Australian/New Zealand Standards

AS/NZS 1170.0:2002 Structural design actions

Part 0: General principles

AS/NZS 1170.1:2002 (R2016) Structural design actions

Part 1: Permanent, imposed and other actions

AS/NZS 1170.2:2021 Structural design actions

Part 2: Wind actions

AS/NZS 1170.3:2003 Structural design actions

Part 3: Snow and ice actions

AS/NZS 1664.1:1997 Aluminium structures

Part 1: Limit state design

AS/NZS 4600:2018 Cold-formed steel structures

AS 4100:2020 Steel structures

NZS 4219:2009 Seismic performance of engineering systems in buildings

Designed: JD Checked: JG

Date: May-24

Job: **13924** Date: **May-24** Designed: **JD** Checked: **JG**

Client: CLENERGY AUSTRALIA

Tilt Array Frame System Spacing Table
with ELITE Rails - Tin Roof (Pierced Fix Roof) Project:

Address: within New Zealand

Tilt Array Frame System Spacing Table for Tin Roof (mm)

Type of Rail ELITE Rails Type of Interface Tilt Leg Solar Panel Dimension 2mx1m Terrain category

						Tilt ar	ngle to ro	of surfa	ce (a), a	≤ 15°						
Wind							Bu	ilding Hei	ght – h (ı	m)						
Region		h≤5 5 <h≤10< th=""><th>h≤15</th><th></th><th></th><th>15<</th><th>h≤20</th><th></th></h≤10<>									h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	545	830	1125	1510		680	920	1400	-	615	830	1280		580	780	1205
NZ1&NZ2 with M _{lee} of 1.35			595	910			490	750	-1			675				635
NZ1&NZ2 with M _{lee} of 1.20	1	565	765	1175		465	625	960	1		565	865			535	815
NZ3		610	820	1265		500	675	1035			605	930			575	875
NZ4		660	895	1350		540	730	1125		490	660	1015		465	625	955

Tilt angle to roof surface (a), $15^{\circ} < a \le 25^{\circ}$

Wind						•	Bu		ght – h (ı							
Region		h:	≤5			5 <h< th=""><th>1≤10</th><th></th><th>, ,</th><th></th><th>h≤15</th><th></th><th></th><th>15<</th><th>h≤20</th><th></th></h<>	1≤10		, ,		h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2		585	790	1215		480	645	990			585	895			550	840
NZ1&NZ2 with Mlee of 1.35		-		640		-		525	-1			475				
NZ1&NZ2 with M _{lee} of 1.20			540	825				675				610				575
NZ3			580	885			475	725	-			655				615
NZ4		465	630	960			515	790			465	710				670

Tilt angle to roof surface (g), $25^{\circ} < g < 60^{\circ}$

						lit angle	to root	surrace (a), 25°	< a ≥ 60)°					
Wind							Bu	ilding He	ght - h (ı	n)						
Region		h	≤5			5<	n≤10			10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2			580	885			475	725				655				620
NZ1&NZ2 with Mlee of 1.35				470								1				
NZ1&NZ2 with M _{lee} of 1.20				605				495								
NZ3				650				535				480				
NZ4			460	705				580				520				495

Client: CLENERGY AUSTRALIA

Project: Tilt Array Frame System Spacing Table with ELITE Rails – Tin Roof (Pierced Fix Roof)

Address: within New Zealand

Job: 13924
cing Table Date: May-24
Pierced Fix Roof) Designed: JD
Checked: JG

Tilt Array Frame System Spacing Table for Tin Roof (mm)

Type of Rail ELITE Rails
Type of Interface Tilt Leg
Solar Panel Dimension 2mx1m
Terrain category **3**

Tilt angle to roof surface (g), $g \le 15^{\circ}$

						HIIT an	igle to ro	or surta	ce (a), a	≤ 15°						
Wind							Bu	ilding He	ght - h (ı	m)						
Region		h:	≤5			5 <h< td=""><td>ı≤10</td><td></td><td></td><td>10<</td><td>h≤15</td><td></td><td></td><td>15<</td><td>h≤20</td><td></td></h<>	ı≤10			10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	655	1010	1375	1620	655	1010	1375	1620	565	865	1175	1535	505	770	1045	1470
NZ1&NZ2 with M _{lee} of 1.35		535	725	1110		535	725	1110	-	465	625	955			560	855
NZ1&NZ2 with M _{lee} of 1.20		685	930	1405		685	930	1405	1	590	800	1230	-	530	715	1095
NZ3	485	735	1000	1425	485	735	1000	1425		635	860	1330		570	770	1185
NZ4	525	800	1085	1450	525	800	1085	1450		690	935	1375		615	835	1285

Tilt angle to roof surface (a), $15^{\circ} < a \le 25^{\circ}$

					ı	iit angie	to roof	surtace (a), 15°	< a ≤ 2:	o°					
Wind							Bu	ilding Hei	ight – h (ı	n)						
Region		h	≤5			5<	n≤10			10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	465	705	960	1420	465	705	960	1420		610	825	1270		545	735	1130
NZ1&NZ2 with M _{lee} of 1.35			510	780			510	780				670				600
NZ1&NZ2 with M _{lee} of 1.20		485	650	1000		485	650	1000			565	860			505	770
NZ3		520	700	1075		520	700	1075	-		605	925			540	825
NZ4		565	760	1170		565	760	1170		490	660	1010			585	895

Tilt angle to roof surface (a), $25^{\circ} < a \le 60^{\circ}$

					T	ilt angle	to roof	surface (a), 25°	< a ≤ 60)°					
Wind							Bu	ilding Hei	ght - h (ı	m)						
Region		h	≤5			5<	n≤10			10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Interna
NZ1&NZ2		520	700	1080		520	700	1080			605	925			540	825
NZ1&NZ2 with M _{lee} of 1.35				570				570				495				
NZ1&NZ2 with M _{lee} of 1.20			480	735		-	480	735				630				565
NZ3			515	790			515	790				680				605
NZ4			560	855			560	855			485	740				660

Relationships built on trust

 Client:
 CLENERGY AUSTRALIA
 Job: 13924

 Project:
 Tilt Array Frame System Spacing Table with ELITE Rails – Tin Roof (Pierced Fix Roof)
 Designed: JD

 Address:
 within New Zealand
 Checked: JG

General Notes

Note 1 Following components are satisfied to use according to AS/NZS 1170.2:2021

Components	Part Number	Description
ELITE Rail	ER-R-ELT	
ECO Rail Splice	ER-SP-ECO, ER-SP-ECO/BA	
Elite Rail Splice	ER-SP-ELT, ER-SP-ELT/BA	
Standard Inter Clamp	ER-IC-ST, ER-IC-ST/BA	
Standard End Clamp	ER-EC-ST, ER-EC-ST/BA	As per drawing or test report
Akashi Clamp	C-U/30/46, C-U/30/46/BA	provided by client
Akashi Clamp with Grounding Clip	C-U/30/46-G, C-U/30/46-G/BA	provided by client
Adjustable Tilt Leg	ER-TL-10/15, ER-TL-15/30, ER-TL-30/60	
Adjustable Tilt Leg, pre-assembled	ER-TL-10/15/PS, ER-TL-15/30/PS	
Adjustable Tilt Leg with L-feet, pre-assembled	TL-10/15/L/PS, TL-15/30/L/PS	
Fixed Tilt Leg, pre-assembled	ER-TL-5/PS, ER-TL-10/PS	

Note 2 Tin roof interface spacing calculated based on 1.5mm steel purlin G450 or 35mm screw embedment into F7 (Pine) timber (JD4 seasoned timber). (2 screws per each interface)

Metal Purlins/Battens	Fasteners to use
0.42mm to 0.75mm (G550)	14g-10 TPI Teks screws or approved equivalent
1.2mm to 2.4mm (G450)	14g-10 TPI Teks screws or approved equivalent
Timber Purlins/Battens/Rafters	Fasteners to use
Softwood F7 (Pine) (JD4 seasoned timber)	14g-10 TPI T17 screws or approved equivalent
Hardwood F17 (JD3 seasoned timber)	14g-10 TPI T17 screws or approved equivalent

Note 3 Maximum uplift wind pressure is limited to 4.7kPa.

Note 4 Deflection is limited to Minimum of L/120 and 15mm.

Note 5 Tilt angle is measured from roof surface.

Note 6 "--" states NOT SUITABLE FOR INSTALLATION.

Note 7 Terrain category definition according to section 4.2.1 of AS/NZS 1170.2:2021 as follows:

Terrain Category 2 (TC2) - Open terrain, including grassland, with well-scattered obstructions having heights generally from 1.5 m to 5 m, with no more than two obstructions per hectare (e.g. farmland and cleared subdivisions with isolated trees and uncut grass).

Terrain Category 3 (TC3) - Terrain with numerous closely spaced obstructions having heights generally from 3 m to 10 m. The minimum density of obstructions shall be at least the equivalent of 10 house-size obstructions per hectare (e.g. suburban housing, light industrial estates or dense

orests).

Note 8 Wind regions are shown in Figure 3.1(B) of AS/NZS 1170.2:2021.

(Refer to Appendix 1 for the high resolution images from standard if required)

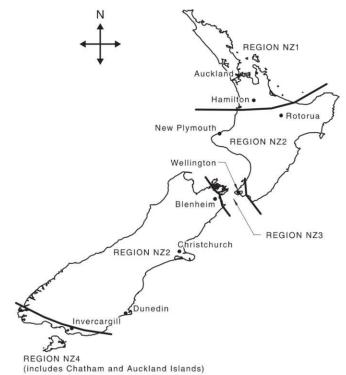


Figure 3.1(B) — Wind regions — New Zealand

Note 9 Base interface spacing to be multiplied by all applicable reduction/increase factors. Factored spacing less than one third of the panel width are not satisfied. (NOT SUITABLE FOR INSTALLATION)

Job: 13924 Date: May-24

Designed: JD

Checked: JG

Relationships built on trust

CLENERGY AUSTRALIA Client:

Project: Tilt Array Frame System Spacing Table

with ELITE Rails - Tin Roof (Pierced Fix Roof)

Address within New Zealand

Wind direction multiplier (Md), Shielding multiplier (Ms) and Hill shape multiplier (Mh) are taken as 1.0. Note 10

Refer section 4.4 of AS/NZS 1170.2:2021 for Lee multiplier (Mlee) and topographic multiplier (Mt). Note 11

Lee multiplier (Mlee) is taken as 1.0 except for WR NZ1&NZ2 with Mlee which is taken as 1.35 and 1.2 separately. Refer section 4.4.1 of AS/NZS 1170.2:2021 for topographic multiplier (Mt). See Note 25 for Lee zones map. Note 12

The assessment includes the effect of earthquake loads. See note 27 for the fixing spacing determined by earthquake loads. Note 13

Alpine regions are excluded for snow assessment. See note 26 for the fixing spacing determined by snow loads. Note 14

Refer section 2.3 and Figure 2.2 of AS/NZS 1170.3:2003 for sub-alpine regions. Probability factor (kp) and Exposure reduction coefficient (Ce) are Note 15

taken as 1.0 and Shape coefficient (μi) is taken as 0.7. See Note 26 for sub-alpine regions map.

Maximum panel weight is limited to 15kg/m²

Maximum panel width is limited to 1200mm. Note 17

Note 18 Maximum rail and panel width overhang is limited to the 40% of the allowable interface spacing.

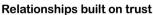
PV panels clamping zone to be according to the manufacturer's specifications. Note 19

Note 20 This certificate is applicable for the corrosion zones C1, C2, C3, C4 and C5. Correspondent roof interface must be used for each zone. Refer SNZ TS 3404:2018 for corrosion zones definitions.

Note 21 This assessment is based on the capacity of the fixings of array frame to the structure and the array frame itself but not PV panel nor roof structures. Other building structures are deemed to be satisfactory. It is the responsibility of the installer to adopt the most critical spacing.

Following reduction/increase factors to be applied to the base spacing for different type of tophat, purlin or batten or if timber screw embedment is reduced by fixing to smaller timber depth. In any case, it is not applicable for installation if the actual fixing spacing after applying Note 22 spacing ratio is less than 300mm.

D 11 (D 11	Fixing Type				Spacing Reduction / Increase			
Purlin/Batten Material	Interfac e	No. of screws	Purlin thickness (mm)	Min. Embedment (mm)	WR NZ1&NZ2	WR NZ1&NZ2 with M _{lee}	WR NZ3	WR NZ4
Timber F7 (Pine)	Tin	1	-	25	-22%	-22%	-22%	-22%
Timber F7 (Pine)	Tin	2	-	25	0%	0%	0%	0%
Timber F7 (Pine)	Tin	1	-	30	-6%	-6%	-6%	-6%
Timber F7 (Pine)	Tin	2	-	30	0%	0%	0%	0%
Timber F7 (Pine)	Tin	1 or 2	-	35	0%	0%	0%	0%
Timber F17 (HW)	Tin	1 or 2	-	25	0%	0%	0%	0%
Timber F17 (HW)	Tin	1 or 2	-	30	0%	0%	0%	0%
Timber F17 (HW)	Tin	1 or 2	-	35	0%	0%	0%	0%
Metal (G550)	Tin	2	0.42	-	-60%	-60%	-60%	-60%
Metal (G550)	Tin	2	0.48	-	-54%	-54%	-54%	-54%
Metal (G550)	Tin	2	0.55	-	-48%	-48%	-48%	-48%
Metal (G550)	Tin	2	0.75	-	-29%	-29%	-29%	-29%
Metal (G450)	Tin	1	1.2	-	-38%	-38%	-38%	-38%
Metal (G450)	Tin	2	1.2	-	0%	0%	0%	0%
Metal (G450)	Tin	1	1.5	-	-22%	-22%	-22%	-22%
Metal (G450)	Tin	2	1.5	-	0%	0%	0%	0%
Metal (G450)	Tin	1 or 2	1.9	-	0%	0%	0%	0%
Metal (G450)	Tin	1 or 2	2.4	-	0%	0%	0%	0%


This certificate can be used for the installation of tilt legs on uncracked concrete roofs using one Chemset per tilt leg/bracket. The minimum pull-out tensile capacity of the fixing anchor must be higher than 5kN with drilled hole depth of 80mm. Concrete slab thickness to be minimum 150mm Note 23 because of anchor cover requirement.

Note 24 Following reduction/increase factors to be applied to the base spacing for different panel lengths.

In any case, the actual fixing spacing after applying spacing ratio is limited to maximum 2000mm

in any case, the actual fixing spacing after applying spacing ratio is inflicted to maximum 2000inin										
Danal Lanath		Spacing Reduction / Increase								
Panel Length (mm)	No. of Rails	WR NZ1&NZ2	WR NZ1&NZ2 with M _{lee}	WR NZ3	WR NZ4					
1700	2	+5%	+17%	+5%	+5%					
1800	2	+3%	+11%	+3%	+3%					
1900	2	+2%	+4%	+2%	+2%					
2000	2	0%	0%	0%	0%					
2100	2	-6%	-6%	-6%	-6%					
2200	2	-10%	-10%	-10%	-10%					
2300	2	-14%	-14%	-14%	-14%					
2400	2	-17%	-17%	-17%	-17%					

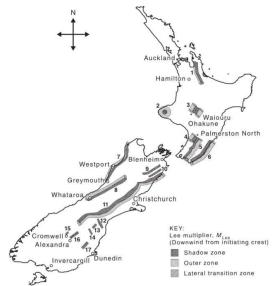
Job: **13924**

Date: May-24

Designed: **JD**

Checked: JG

Client: CLENERGY AUSTRALIA

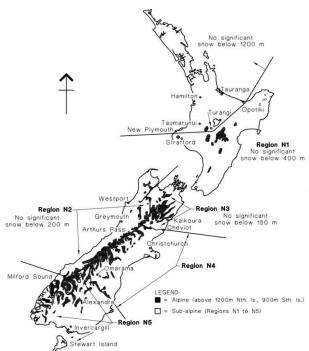

Project: Tilt Array Frame System Spacing Table with ELITE Rails – Tin Roof (Pierced Fix Roof)

Address: within New Zealand

Note 25 Interface spacing to be reduced as follows for sites in wind regions NZ1 & NZ2 with Mlee over 500m above sea level: (Refer to Appendix 2 for the high resolution images from standard if required)

Site Elevation, E (m)	Spacing Reduction
E < 500	0%
500 ≤ E < 700	-20%
700 ≤ E < 900	-24%
900 ≤ E < 1200	-31%
E ≥ 1200	N/A

	North Island			
1	Kaimai			
2	Taranaki			
3	Ruapehu			
4	Tararua			
5	Tararua and Orongorongo			
6	Coastal Wairarapa			
	South Island			
7	West Coast North			
8	West Coast Alps			
9	Awatere			
10	Inland Kaikoura			
11	Southern Alps			
12	Hunter			
13	Hakataramea			
14	St Mary's			
15	Pisa			
16	Dunstan			
17	Rock and Pillar			


NOTE 1 Some outer and lateral transition zones are not shown

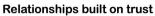
NOTE 2 For numbers shown, see the first column of Table 4.4.

Figure 4.6 — Locations of New Zealand lee zones

Note 26 Maximum Tin roof interface spacing in sub-alpine regions to be limited to follows for all roof zones. Lateral loading on array frame (due to accumulation snow under PV panels or exerted by drifts) has not been considered. Sub-alpine zone shown in Figure 2.2 of AS/NZS 1170.3:2003 (Refer to Appendix 3 for the high resolution images from standard if required)

			Maximum Interfa	ice Spacing (mm)	
Site Elevation, E (m)	No. of Rails	Snow Region N1	Snow Region N2&N3	Snow Region N4	Snow Region N5
E ≤ 100	2	N/A	N/A	N/A	1595
100 < E ≤ 200	2	N/A	1595	1390	1595
200 < E ≤ 300	2	N/A	1595	1280	1460
300 < E ≤ 400	2	N/A	1595	1200	1390
400 < E ≤ 500	2	1595	1400	1160	1315
500 < E ≤ 700	2	1390	1230	1085	1200
700 < E ≤ 900	2	1250	1125	1030	1120
900 < E ≤ 1200	2	1120	N/A	N/A	N/A

2.3 NEW ZEALAND


Alpine and sub-alpine regions are defined as follows:

- (a) N1 (southern portion of North Island of New Zealand, see Figure 2.2):
 - (i) Sub-alpine between 400 m and 1200 m.
 - (ii) Alpine ≥1200 m.
- (b) N2 (South Island of New Zealand):
 - (i) Sub-alpine between 200 m and 900 m.
 - (ii) Alpine ≥900 m.
- (c) N3 (South Island of New Zealand):
 - (i) Sub-alpine between 150 m and 900 m.
 - (ii) Alpine ≥900 m.
- (d) N4 and N5 (South Island of New Zealand):
 - (i) Sub-alpine <900 m.
 - (ii) Alpine ≥900 m.

NOTE: This map is approximate only and altitude above mean sea level shall be used to determine snow region. For sub-alpine regions in the South Island (N2, N3, N4 and N5) the regions coincide with the 1988 county boundaries. Where an alpine region exists between sub-alpine regions, the alpine region separates the 2 sub-alpine regions (which extend downwards from 1200 m altitude).

FIGURE 2.2 NEW ZEALAND—APPROXIMATE LOCATIONS OF ALPINE AND SUBALPINE REGIONS

Job: **13924**

Date: May-24

Designed: ${\bf JD}$

Checked: JG

Client: **CLENERGY AUSTRALIA**

Tilt Array Frame System Spacing Table Project: with ELITE Rails - Tin Roof (Pierced Fix Roof)

Address: within New Zealand

Note 27

Refer table 3 and Figure 2 of NZS 4219:2009 for zone factor (Z). Performance factor (Cp) is taken as 0.85 and Component risk factor (Rc) coefficient (Ce) is taken as 1.0 and High coefficient (Ch) is taken as 3. Maximum Tilt mount interface spacing in Earthquake zone to be limited to follows for all roof zones. (Refer to Appendix 4 for the high resolution images from standard if required)

	PP					
			Maximu	m Interface Spacir	ng (mm)	
Earthquake Zone, Z (m)	No. of Rails	Max Panel Length	Max Panel Length	Max Panel Length	Max Panel Length	Max Panel Length
		2000mm	2100mm	2200mm	2300mm	2400mm
Z ≤0.13	2	2000	1985	1965	1945	1920
0.13 < Z ≤0.15	2	1940	1915	1895	1875	1855
0.15 < Z ≤0.18	2	1855	1830	1810	1785	1765
$0.18 < Z \le 0.20$	2	1805	1780	1755	1725	1700
$0.20 < Z \le 0.23$	2	1725	1700	1675	1650	1625
0.23 < Z ≤0.26	2	1655	1630	1605	1580	1560
0.26 < Z ≤0.30	2	1580	1555	1530	1510	1485
$0.30 < Z \le 0.35$	2	1500	1475	1455	1430	1410
$0.35 < Z \le 0.40$	2	1435	1410	1390	1370	1350
$0.40 < Z \le 0.45$	2	1380	1360	1335	1315	1300
$0.45 < Z \le 0.50$	2	1330	1310	1290	1270	1245
$0.50 < Z \le 0.55$	2	1290	1270	1235	1180	1130
0.55 < Z ≤ 0.60	2	1245	1185	1130	1080	1035

Note: The seismic assessment is based on the rail capacity and shear capacity of fixings.

Table 3 – Zone factors for New Zealand locations (north to south)

Table 3 – Zone fa	ctors for New Zealar	id locations (north	to south) (continued)

Location

Christchurch

102

103 Geraldine

104 Ashburton

105 Fairlie

106 Temuka

107 Timaru Z

0.22

0.19

0.20

0.24

0.17

0.15

#	Location	Z
1	Kaitaia	0.13
2	Paihia/Russell	0.13
3	Kaikohe	0.13
4	Whangarei	0.13
5	Dargaville	0.13
6	Warkworth	0.13
7	Auckland	0.13
В	Manakau City	0.13
9	Waiuku	0.13
10	Pukekohe	0.13
11	Thames	0.16
12	Paeroa	0.18
13	Waihi	0.18
14	Huntly	0.15
15	Ngaruawahia	0.15
16	Morrinsville	0.18
17	Te Aroha	0.18
18	Tauranga	0.20
19	Mount Maunganui	0.20
20	Hamilton	0.16
21	Cambridge	0.18
22	Te Awamutu	0.17
23	Matamata	0.19
24	Te Puke	0.22
25	Putaruru	0.21
26	Tokoroa	0.21
27	Otorohanga	0.17
28	Te Kuiti	0.18
29	Mangakino	0.21
30	Rotorua	0.24
31	Kawerau	0.29
32	Whakatane	0.30
33	Opotiki	0.30
34	Ruatoria	0.33
35	Murupara	0.30

#	Location	Z	#	Location	Z
36	Taupo	0.28	70	Porirua	0.40
37	Taumarunui	0.21	71	Wellington CBD	0.40
38	Turangi	0.27		(north of Basin	
39	Gisborne	0.36		Reserve)	-
40	Wairoa	0.37	72	Wellington	0.40
41	Waitara	0.18	73	Hutt Valley – south of Taita Gorge	0.40
42	New Plymouth	0.18	74	Upper Hutt	0.42
43	Inglewood	0.18	75	Eastbourne - Point	0.40
44	Stratford	0.18] '3	Howard	0.40
45	Opunake	0.18	76	Wainuiomata	0.40
46	Hawera	0.18	77	Takaka	0.23
47	Patea	0.19	78	Motueka	0.26
48	Raetihi	0.26	79	Nelson	0.27
49	Ohakune	0.27	80	Picton	0.30
50	Waiouru	0.29	81	Blenheim	0.33
51	Napier	0.38	82	St Arnaud	0.36
52	Hastings	0.39	83	Westport	0.30
53	Wanganui	0.25	84	Reefton	0.37
54	Waipawa	0.41	85	Murchison	0.34
55	Waipukurau	0.41	86	Springs Junction	0.45
56	Taihape	0.33	87	Hanmer Springs	0.55
57	Marton	0.30	88	Seddon	0.40
58	Bulls	0.31	89	Ward	0.40
59	Feilding	0.37	90	Cheviot	0.40
60	Palmerston North	0.38	91	Greymouth	0.37
61	Dannevirke	0.42	92	Kaikoura	0.42
62	Woodville	0.41	93	Harihari	0.46
63	Pahiatua	0.42	94	Hokitika	0.45
64	Foxton/Foxton	0.36	95	Fox Glacier	0.44
	Beach		96	Franz Josef	0.44
65	Levin	0.40	97	Otira	0.60
66	Otaki	0.40	98	Arthurs Pass	0.60
67	Waikanae	0.40	99	Rangiora	0.33
68	Paraparaumu	0.40	100	Darfield	0.30
69	Masterton	0.42	101	Akaroa	0.16

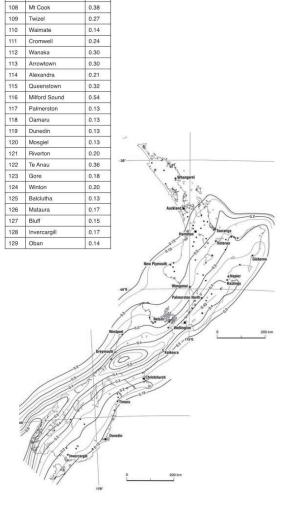


Figure 2 - Zone factor. Z

Job: **13924**

Date: May-24

Designed: ${\bf JD}$

Checked: JG

Client: CLENERGY AUSTRALIA

Project: Tilt Array Frame System Spacing Table with ELITE Rails – Tin Roof (Pierced Fix Roof)

Address: within New Zealand

Note 28 Building height is average roof height of structure above ground. Refer Figure 1 for definition of h, d and b.

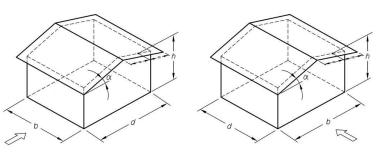
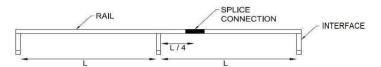



Figure 1 – h, d and b definition

Note 29 Rail splice connection must be placed at a quarter length of the spacing of interface. No Splice connection should be placed at the centre of spacing or over the interface.

Note 30 Refer Figure 2 for definition of roof zones. The smallest spacing to be used for panels fall between two (or more) roof zones.

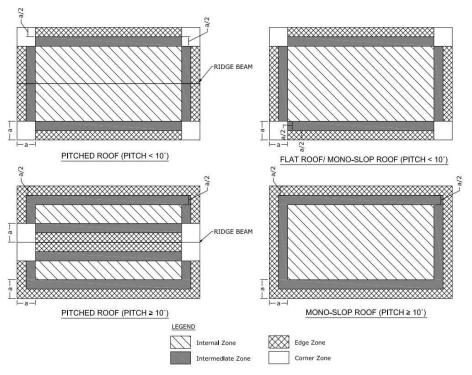
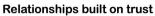



Figure 2- Roof Zones Definition

In Figure 2, the value of dimension "a" is the minimum of 0.2b or 0.2d, if (h/b) or $(h/d) \ge 0.2$; or 2h if both (h/b) and (h/d) < 0.2 (b & d are building dimensions and h is average roof height, see Figure 1)

- Note 31 Perpendicular installation (rails to purlins) for roofs with roof pitch greater than 10 degrees is not covered by this certification.
- Note 32 Installation of solar array to be done in accordance with the relevant Clenergy PV installation manual. Contact Clenergy if you are unable to comply with any of the above installation specifications.

CLENERGY AUSTRALIA Client:

Tilt Array Frame System Spacing Table with ELITE Rails - Tin Roof (Pierced Fix Roof) Project:

Address: within New Zealand

Job: **13924** Date: May-24 Designed: ${\bf JD}$ Checked: JG

Examples

Example 1	Tin Roof	factor

Terrain Category	2	-
Building Height	6.5m	-
Tilt angle	20°	-
Panel Dimension	2m x 1m	1
Purlin Thickness	1.5mm	1
No. of screws	2	1
Building Height Tilt angle Panel Dimension Purlin Thickness	6.5m 20° 2m x 1m	- - 1

Final factor	1
Roof Zone	Final Spacing
Internal Zone	990mm
Intermediate Zone	645mm
Edge Zone	480mm
Corner Zone	

Example 2 Tin Roof factor

Wind Region	NZ2, with Mlee of 1.35	-
Terrain Category	3	-
Building Height	12m	-
Tilt angle	22°	-
Panel Dimension	1.75m x 1m	1.11
Purlin Thickness	1.9mm	1
No. of screws	2	1
Site Elevation	600m	0.80
Sub-alpine Region	N2 (E=600m)	-

Final factor	0.89
Roof Zone	Final Spacing
Internal Zone	590mm
Intermediate Zone	
Edge Zone	
Corner Zone	

Final factor Roof Zone

Final factor

Example 3 Tin Roof factor

TITI KOOI		iacu
Wind Region	NZ3	-
Terrain Category	3	-
Building Height	5m	-
Tilt angle	10°	-
Panel Dimension	2m x 1.1m	1
Purlin Thickness	2.4mm	1
No. of screws	1	1
Sub-alpine Pegion	N1 (F-600m)	*

	Internal Zone	1390mm*	
	Intermediate Zone	1000mm	
	Edge Zone	735mm	
	Corner Zone	485mm	
NΙς	to 26 the maximum enacing	a is 1300mm which	h is determined by

Final Spacing

1.05

Example 4 Tile Roof factor

THE ROOF		iuctoi
Wind Region	NZ4	-
Terrain Category	2	-
Building Height	5m	-
Tilt angle	25°	
Panel Dimension	1.65m x 1.1m	1.05
Embedment F17	30mm	1
No. of screws	2	1
Sub-alpine Region	N5 (E=200m)	-

	Roof Zone	Final Spacing	
	Internal Zone	1005mm	
	Intermediate Zone	660mm	
	Edge Zone	485mm	
	Corner Zone		
(From No	te 26, the maximum spacin	g is 1595mm, whic	ch is determined by snow)

Example 5

Tin Roof		factor
Wind Region	NZ2, with Mlee of 1.20	-
Terrain Category	3	-
Building Height	10m	-
Tilt angle	15°	-
Panel Dimension	2.40m x 1.1m	0.83
Purlin Thickness	1.9mm	1
No. of screws	2	1
Site Elevation	700mm	0.76
Sub-alpine Region	N5 (E=700m)	-

Final factor	0.63
D (7	F: 10 :

Roof Zone	Final Spacing
Internal Zone	885mm
Intermediate Zone	585mm
Edge Zone	430mm
Corner Zone	

(From Note 27, the maximum spacing is 1030mm, which is determined by snow)

Earthquake zone, Z 0.6 (Arthurs pass)

(From Note 27, the maximum spacing is 1035mm, which is determined by earthquake)

Appendix

1. Refer Figure 3.1(B) of AS/NZS 1170.2:2021 for the wind region

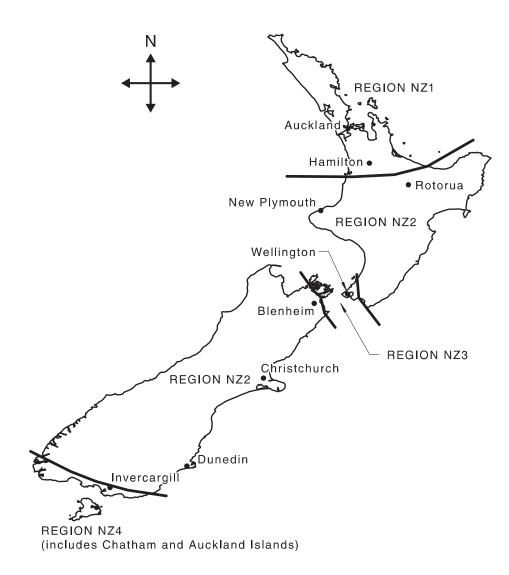
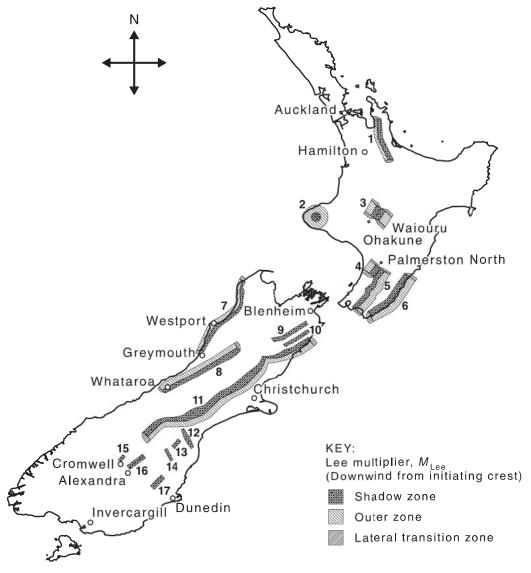



Figure 3.1(B) — Wind regions — New Zealand

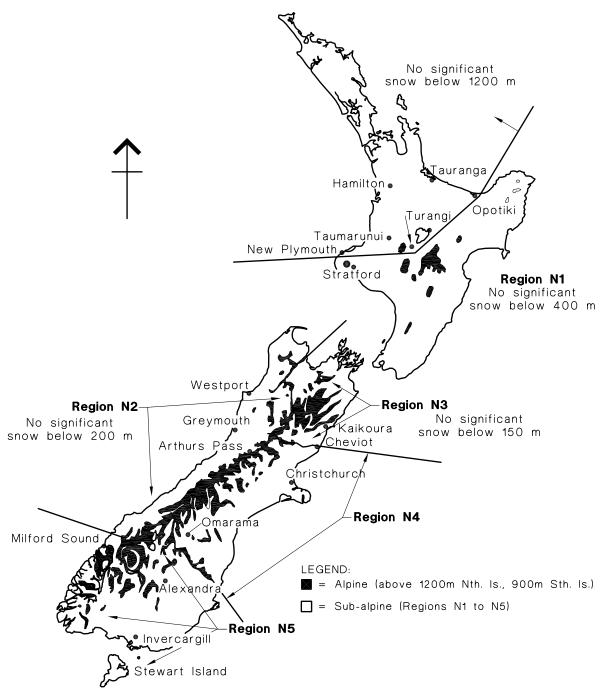
2. Refer Table 4.4 and Figure 4.6 of AS/NZS 1170.2:2021 for the location of New Zealand Lee zone

Table 4.4 — New Zealand lee zones direction and extent of shadow and outer zones

	-	D 1		Shadow	Outer
	Range	Direction	M _{lee}	(km)	(km)
Vort	ı İsland	`			·
1.	Kaimai	E&SE	1.20	0 to 8	8 to 20
2.	Taranaki	Any, taken to be 90° sector from mountain top downwind to location	1.35	0 to 12	12 to 30
3.	Ruapehu	NW and SE	1.35	0 to 12	12 to 30
4.	Tararua	SE	1.20	0 to 8	8 to 20
5.	Tararua and Orongorongo	NW	1.20	0 to 8	8 to 20
6.	Coastal Wairarapa	NW			
South	ı İsland				
7.	West Coast North	E and SE	1.20	0 to 8	8 to 20
8.	West Coast Alps	SE	1.35	0 to 12	12 to 30
9.	Awatere	NW	1.35	0 to 12	(within Inland Kaikoura)
10.	Inland Kaikoura	NW	1.35	0 to 12	(within Southern Alps)
11.	Southern Alps	NW	1.35	0 to 12	12 to 30
12.	Hunter	SW	1.20	0 to 8	8 to 20
13.	Hakataramea	NW	1.20	0 to 8	8 to 20
14.	St Mary's	SW	1.20	0 to 8	8 to 20
15.	Pisa	NW	1.20	0 to 8	8 to 20
16.	Dunstan	NW	1.20	0 to 8	8 to 20
17.	Rock and Pillar	NW	1.20	0 to 8	8 to 20

NOTE 1 Some outer and lateral transition zones are not shown.

NOTE 2 For numbers shown, see the first column of <u>Table 4.4</u>.


Figure 4.6 — Locations of New Zealand lee zones

3. Refer section 2.3 and Figure 2.2 of AS/NZS 1170.3:2003 for Sub-alpine zone the location of New Zealand Lee zone

2.3 NEW ZEALAND

Alpine and sub-alpine regions are defined as follows:

- (a) N1 (southern portion of North Island of New Zealand, see Figure 2.2):
 - (i) Sub-alpine between 400 m and 1200 m.
 - (ii) Alpine ≥1200 m.
- (b) N2 (South Island of New Zealand):
 - (i) Sub-alpine between 200 m and 900 m.
 - (ii) Alpine ≥900 m.
- (c) N3 (South Island of New Zealand):
 - (i) Sub-alpine between 150 m and 900 m.
 - (ii) Alpine ≥900 m.
- (d) N4 and N5 (South Island of New Zealand):
 - (i) Sub-alpine <900 m.
 - (ii) Alpine ≥900 m.

NOTE: This map is approximate only and altitude above mean sea level shall be used to determine snow region. For sub-alpine regions in the South Island (N2, N3, N4 and N5) the regions coincide with the 1988 county boundaries. Where an alpine region exists between sub-alpine regions, the alpine region separates the 2 sub-alpine regions (which extend downwards from 1200 m altitude).

FIGURE 2.2 NEW ZEALAND—APPROXIMATE LOCATIONS OF ALPINE AND SUBALPINE REGIONS

4. Refer table 3 and Figure 2 of NZS 4219:2009 for zone factor (Z)

Table 3 – Zone factors for New Zealand locations (north to south)

#	Location	Z
1	Kaitaia	0.13
2	Paihia/Russell	0.13
3	Kaikohe	0.13
4	Whangarei	0.13
5	Dargaville	0.13
6	Warkworth	0.13
7	Auckland	0.13
8	Manakau City	0.13
9	Waiuku	0.13
10	Pukekohe	0.13
11	Thames	0.16
12	Paeroa	0.18
13	Waihi	0.18
14	Huntly	0.15
15	Ngaruawahia	0.15
16	Morrinsville	0.18
17	Te Aroha	0.18
18	Tauranga	0.20
19	Mount Maunganui	0.20
20	Hamilton	0.16
21	Cambridge	0.18
22	Te Awamutu	0.17
23	Matamata	0.19
24	Te Puke	0.22
25	Putaruru	0.21
26	Tokoroa	0.21
27	Otorohanga	0.17
28	Te Kuiti	0.18
29	Mangakino	0.21
30	Rotorua	0.24
31	Kawerau	0.29
32	Whakatane	0.30
33	Opotiki	0.30
34	Ruatoria	0.33
35	Murupara	0.30

36 Taupo 0.28 37 Taumarunui 0.21 38 Turangi 0.27 39 Gisborne 0.36 40 Wairoa 0.37 41 Waitara 0.18 42 New Plymouth 0.18 42 New Plymouth 0.18 43 Inglewood 0.18 44 Stratford 0.18 45 Opunake 0.18 46 Hawera 0.18 47 Patea 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipawa 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls	#	Location	Z
38 Turangi 0.27 39 Gisborne 0.36 40 Wairoa 0.37 41 Waitara 0.18 42 New Plymouth 0.18 42 New Plymouth 0.18 43 Inglewood 0.18 44 Stratford 0.18 45 Opunake 0.18 46 Hawera 0.18 47 Patea 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston N	36	Taupo	0.28
39 Gisborne 0.36 40 Wairoa 0.37 41 Waitara 0.18 42 New Plymouth 0.18 43 Inglewood 0.18 44 Stratford 0.18 45 Opunake 0.18 46 Hawera 0.18 47 Patea 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodv	37	Taumarunui	0.21
40 Wairoa 0.37 41 Waitara 0.18 42 New Plymouth 0.18 43 Inglewood 0.18 44 Stratford 0.18 45 Opunake 0.18 46 Hawera 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton 0.36 65 Levin 0.40 <t< td=""><td>38</td><td>Turangi</td><td>0.27</td></t<>	38	Turangi	0.27
41 Waitara 0.18 42 New Plymouth 0.18 43 Inglewood 0.18 44 Stratford 0.18 45 Opunake 0.18 46 Hawera 0.18 47 Patea 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton 0.36 65 Levin 0.40 <tr< td=""><td>39</td><td>Gisborne</td><td>0.36</td></tr<>	39	Gisborne	0.36
42 New Plymouth 0.18 43 Inglewood 0.18 44 Stratford 0.18 45 Opunake 0.18 46 Hawera 0.18 47 Patea 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton 0.36 Beach 0.40 65 Levin 0.40 66	40	Wairoa	0.37
43 Inglewood 0.18 44 Stratford 0.18 45 Opunake 0.18 46 Hawera 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	41	Waitara	0.18
44 Stratford 0.18 45 Opunake 0.18 46 Hawera 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton 0.36 Beach 0.40 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	42	New Plymouth	0.18
45 Opunake 0.18 46 Hawera 0.18 47 Patea 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	43	Inglewood	0.18
46 Hawera 0.18 47 Patea 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	44	Stratford	0.18
47 Patea 0.19 48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	45	Opunake	0.18
48 Raetihi 0.26 49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	46	Hawera	0.18
49 Ohakune 0.27 50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton 0.36 Beach 0.40 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	47	Patea	0.19
50 Waiouru 0.29 51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton 0.36 Beach 0.40 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	48	Raetihi	0.26
51 Napier 0.38 52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton 0.36 Beach 0.40 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	49	Ohakune	0.27
52 Hastings 0.39 53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	50	Waiouru	0.29
53 Wanganui 0.25 54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	51	Napier	0.38
54 Waipawa 0.41 55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	52	Hastings	0.39
55 Waipukurau 0.41 56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	53	Wanganui	0.25
56 Taihape 0.33 57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	54	Waipawa	0.41
57 Marton 0.30 58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	55	Waipukurau	0.41
58 Bulls 0.31 59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	56	Taihape	0.33
59 Feilding 0.37 60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	57	Marton	0.30
60 Palmerston North 0.38 61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	58	Bulls	0.31
61 Dannevirke 0.42 62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	59	Feilding	0.37
62 Woodville 0.41 63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	60	Palmerston North	0.38
63 Pahiatua 0.42 64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	61	Dannevirke	0.42
64 Foxton/Foxton Beach 0.36 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	62	Woodville	0.41
Beach 65 Levin 0.40 66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	63	Pahiatua	0.42
66 Otaki 0.40 67 Waikanae 0.40 68 Paraparaumu 0.40	64		0.36
67 Waikanae 0.40 68 Paraparaumu 0.40	65	Levin	0.40
68 Paraparaumu 0.40	66	Otaki	0.40
'	67	Waikanae	0.40
69 Masterton 0.42	68	Paraparaumu	0.40
	69	Masterton	0.42

Table 3 – Zone factors for New Zealand locations (north to south) (continued)

70 Porirua 0.40 71 Wellington CBD (north of Basin Reserve) 0.40 72 Wellington 0.40 73 Hutt Valley – south of Taita Gorge 0.40 74 Upper Hutt 0.42 75 Eastbourne – Point Howard 0.40 76 Wainuiomata 0.40 77 Takaka 0.23 78 Motueka 0.26 79 Nelson 0.27 80 Picton 0.30 81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari	#	Location	Z
(north of Basin Reserve) 72 Wellington 0.40 73 Hutt Valley – south of Taita Gorge 0.40 74 Upper Hutt 0.42 75 Eastbourne – Point Howard 0.40 76 Wainuiomata 0.40 77 Takaka 0.23 78 Motueka 0.26 79 Nelson 0.27 80 Picton 0.30 81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira	70	Porirua	0.40
73 Hutt Valley – south of Taita Gorge 0.40 74 Upper Hutt 0.42 75 Eastbourne – Point Howard 0.40 76 Wainuiomata 0.40 77 Takaka 0.23 78 Motueka 0.26 79 Nelson 0.27 80 Picton 0.30 81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 <	71	(north of Basin	0.40
74 Upper Hutt 0.42 75 Eastbourne – Point Howard 0.40 76 Wainuiomata 0.40 77 Takaka 0.23 78 Motueka 0.26 79 Nelson 0.27 80 Picton 0.30 81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98<	72	Wellington	0.40
75 Eastbourne – Point Howard 0.40 76 Wainuiomata 0.40 77 Takaka 0.23 78 Motueka 0.26 79 Nelson 0.27 80 Picton 0.30 81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	73	_	0.40
76 Wainuiomata 0.40 77 Takaka 0.23 78 Motueka 0.26 79 Nelson 0.27 80 Picton 0.30 81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.34 86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	74	Upper Hutt	0.42
77 Takaka 0.23 78 Motueka 0.26 79 Nelson 0.27 80 Picton 0.30 81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.34 86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	75		0.40
78 Motueka 0.26 79 Nelson 0.27 80 Picton 0.30 81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.45 86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	76	Wainuiomata	0.40
79 Nelson 0.27 80 Picton 0.30 81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.34 86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	77	Takaka	0.23
80 Picton 0.30 81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.34 86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	78	Motueka	0.26
81 Blenheim 0.33 82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.34 86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	79	Nelson	0.27
82 St Arnaud 0.36 83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.34 86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	80	Picton	0.30
83 Westport 0.30 84 Reefton 0.37 85 Murchison 0.34 86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	81	Blenheim	0.33
84 Reefton 0.37 85 Murchison 0.34 86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	82	St Arnaud	0.36
85 Murchison 0.34 86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	83	Westport	0.30
86 Springs Junction 0.45 87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	84	Reefton	0.37
87 Hanmer Springs 0.55 88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	85	Murchison	0.34
88 Seddon 0.40 89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	86	Springs Junction	0.45
89 Ward 0.40 90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	87	Hanmer Springs	0.55
90 Cheviot 0.40 91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	88	Seddon	0.40
91 Greymouth 0.37 92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	89	Ward	0.40
92 Kaikoura 0.42 93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	90	Cheviot	0.40
93 Harihari 0.46 94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	91	Greymouth	0.37
94 Hokitika 0.45 95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	92	Kaikoura	0.42
95 Fox Glacier 0.44 96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	93	Harihari	0.46
96 Franz Josef 0.44 97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	94	Hokitika	0.45
97 Otira 0.60 98 Arthurs Pass 0.60 99 Rangiora 0.33	95	Fox Glacier	0.44
98 Arthurs Pass 0.60 99 Rangiora 0.33	96	Franz Josef	0.44
99 Rangiora 0.33	97	Otira	0.60
3 3 3 3	98	Arthurs Pass	0.60
100 D C 11	99	Rangiora	0.33
100 Darfield 0.30	100	Darfield	0.30
101 Akaroa 0.16	101	Akaroa	0.16

#	Location	Z
102	Christchurch	0.22
103	Geraldine	0.19
104	Ashburton	0.20
105	Fairlie	0.24
106	Temuka	0.17
107	Timaru	0.15
108	Mt Cook	0.38
109	Twizel	0.27
110	Waimate	0.14
111	Cromwell	0.24
112	Wanaka	0.30
113	Arrowtown	0.30
114	Alexandra	0.21
115	Queenstown	0.32
116	Milford Sound	0.54
117	Palmerston	0.13
118	Oamaru	0.13
119	Dunedin	0.13
120	Mosgiel	0.13
121	Riverton	0.20
122	Te Anau	0.36
123	Gore	0.18
124	Winton	0.20
125	Balclutha	0.13
126	Mataura	0.17
127	Bluff	0.15
128	Invercargill	0.17
129	Oban	0.14

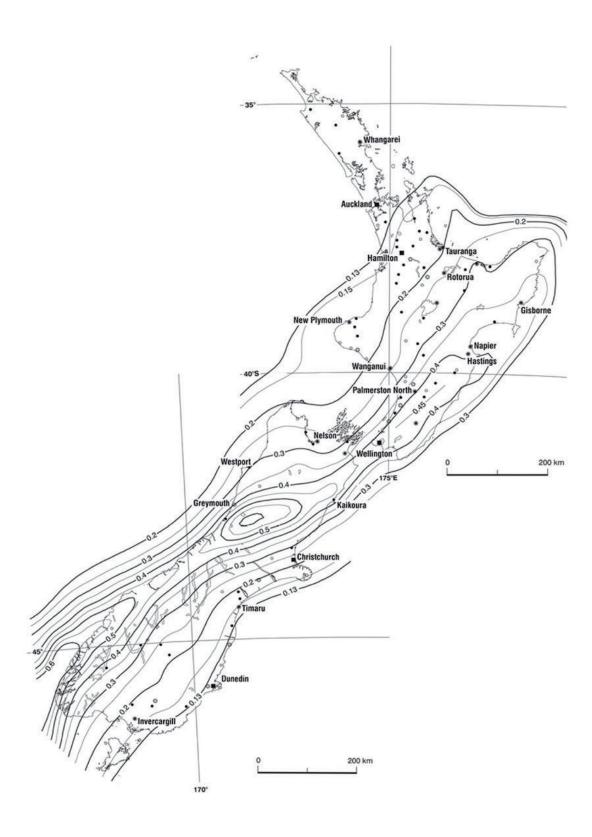


Figure 2 – Zone factor, Z

Building Code Clause		、R1
Building Code Clause	S	s)

PRODUCER STATEMENT - PS1 - DESIGN

Gamcorp Pty Ltd			
(Design Firm	n)		
To: Clenergy Australia			
(Owner/Develo	per)		
TO BE SUPPLIED TO: (Building Consent A			
	of Mount systems with ER-R-ECO & ER-R-ELT Penetrative		
AT: Within New Zealand (Address)			
Town/City: LOT.	DP SO		
(Address) We have been engaged by the owner/developer referred to above to	provide:		
The assessment according to the capacity of the fixing of the array fi			
top solar panel installation. PV panel and building structure including roof structure are excluded.			
(Extent of Engage	ement)		
services in respect of the requirements of Clause(s).B1	of the Building Code for:		
All or Part only (as specified in the attachment to this statement			
The design carried out by us has been prepared in accordance with:			
Compliance Documents issued by the Ministry of Business, Innov	(verification method/acceptable solution)		
I Alternative solution as per the attached schedule	on Letter <u>13708-01(Eco Rail) & 13924-01(Elite Rail)</u> for Flush Mount <u>3-02 (Eco Rail) &13924-02(Elite Rail)</u> for Tilt Mount system		
The proposed building work covered by this producer statement is de	escribed on the drawings titled:		
together with the specification, and other documents set out in the schedule attached to this statement. On behalf of the Design Firm, and subject to: refer Certification Letter 13708-01(Eco Rail) & 13924-01(Elite Rail) for Flush (i) Site verification of the following design assumptions Mount system & 13708-02 (Eco Rail) & 13924-02(Elite Rail) for Tilt Mount system (ii) All proprietary products meeting their performance specification requirements;			
I believe on reasonable grounds that a) the building, if constructed documents provided or listed in the attached schedule, will comply w the persons who have undertaken the design have the necessary co construction monitoring/observation:	ith the relevant provisions of the Building Code and that b),		
CM1 XCM2 CM3 CM4 CM5 (Engineering Categories)			
I, L. Van Spaandonk am: (Name of Design Professional)	© CPEng # CMEngNZ 2003796		
I am a member of: Engineering New Zealand and hold the followi	ng qualifications:FIEAust CPEng NER APEC Engineer IntPE(Aus) CMEngNZ		
The Design Firm issuing this statement holds a current policy of Pro The Design Firm is a member of ACE New Zealand:	fessional Indemnity Insurance no less than \$200,000*.		
SIGNED BY L. Van Spaandonk	(Signature)		
SIGNED BY L. Van Spaandonk (Name of Design Professional)			
Common Plantal	Date.		
(Design Firm)	Date.		

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACE NEW ZEALAND AND ENGINEERING NEW ZEALAND

GUIDANCE ON USE OF PRODUCER STATEMENTS

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task committee consisting of members of the New Zealand Institute of Architects, Institution of Professional engineers New Zealand (now Engineering New Zealand), ACE New Zealand in consultation with the Building Officials Institute of New Zealand. The original suit of producer statements has been revised at the date of this form as a result of enactment of the Building Act (2004) by these organisations to ensure standard use within the industry.

The producer statement system is intended to provide Building Consent Authorities (BCAs) with reasonable grounds for the issue of a Building Consent or a Code Compliance Certificate, without having to duplicate design or construction checking undertaken by others.

PS1 Design Intended for use by a suitably qualified independent design professional in circumstances where the BCA accepts a producer statement for establishing reasonable grounds to issue a Building Consent;

PS2 Design Review Intended for use by a suitably qualified independent design professional where the BCA accepts an independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

PS3 Construction Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 or Schedules E1/E2 of NZIA's SCC 2011²

PS4 Construction Review Intended for use by a suitably qualified independent design professional who undertakes construction monitoring of the building works where the BCA requests a producer statement prior to issuing a Code Compliance Certificate.

This must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACE New Zealand and Engineering New Zealand to interpret the Producer Statement.

Competence of Design Professional

This statement is made by a Design Firm that has undertaken a contract of services for the services named, and is signed by a person authorised by that firm to verify the processes within the firm and competence of its designers.

A competent design professional will have a professional qualification and proven current competence through registration on a national competence based register as a Chartered Professional Engineer (CPEng).

Membership of a professional body, such as Engineering New Zealand (formerly IPENZ) provides additional assurance of the designer's standing within the profession. If the design firm is a member of ACE New Zealand, this provides additional assurance about the standing of the firm.

Persons or firms meeting these criteria satisfy the term "suitably qualified independent design professional".

*Professional Indemnity Insurance

As part of membership requirements, ACE New Zealand requires all member firms to hold Professional Indemnity Insurance to a minimum level.

The PI Insurance minimum stated on the front of this form reflects standard, small projects. If the parties deem this inappropriate for large projects the minimum may be up to \$500,000.

Professional Services during Construction Phase

There are several levels of service which a Design Firm may provide during the construction phase of a project (CM1-CM5 for Engineers³). The Building Consent Authority is encouraged to require that the service to be provided by the Design Firm is appropriate for the project concerned.

Requirement to provide Producer Statement PS4

Building Consent Authorities should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the time the building consent is issued as no design professional should be expected to provide a producer statement unless such a requirement forms part of the Design firm's engagement.

Attached Particulars

Attached particulars referred to in this producer statement refer to supplementary information appended to the producer statement.

Refer Also:

- Conditions of Contract for Building & Civil Engineering Construction NZS 3910: 2013
- NZIA Standard Conditions of Contract SCC 2011

Guideline on the Briefing & Engagement for Consulting Engineering Services (ACE New Zealand/Engineering New Zealand 2004)

4 PN Guidelines on Producer Statements

www.acenz.org.nz www.engineeringnz.org

association of consulting an engineering

Certificate User Guideline

Guidelines for Tilt array frame system spacing (Tin Roof):

- 1. Building dimensions, b, d & h. Generally we study buildings for 2 main directions. So b & d will be swapped regarding the considered wind blowing direction. b is plan dimension perpendicular to wind direction, d is plan dimension parallel to wind direction and h is average building height. (See Note 28)
- 2. Determine wind terrain category. (see Note 7)
- 3. Determine wind region. (see Note 8)
- 4. Determine tilt angle to roof surface. The tables are calculated according to tilt angle of PV panels to roof surface not to horizon.
- 5. Find the interface spacing for all roof zones (corner, edge, intermediate & internal) from the tables according to terrain category, wind region (if building is located in Mlee zones within NZ1 & NZ2 wind regions, adopt wind region NZ1 & NZ2 with Mlee values from the tables), building height and h/d. (see Note 30 for roof zone definition and note 25 for MIee zone)
- 6. All applicable reduction/increase factors should be applied to the initial spacing values as below.
 - If building is located in Mlee zones and site elevation is more than 500m above sea level, multiply the table values by relevant reduction factors. (See Note 25)
 - Apply reduction/increase factors to spacing values for different purlin types (see Note
 - For the fixing requirement on the concrete roof if required, please see it in Note 23
 - Apply reduction/increase factors to spacing values according to different panel length (See Note 24)
- 7. From the above procedure, the fixing spacing by the wind load and corrosion is provided.
- 8. For the fixing spacing governed by snow load, it can be adopt based on site elevation and snow region within sub alpine regions in the Note 26
- 9. For the fixing spacing by earthquake load, it can be adopted based on the earthquake factor Z and no of rail in the Note 27.
- 10. The final interface spacing chosen for installation must be the minimum value within those values provided by wind load, snow load and earthquake load separately.
- 11. See the examples for some different scenarios

Clenergy

3/10 Duerdin St Clayton VIC 3168 Australia

Phone: +61 3 9239 8088

Email: sales@clenergy.com.au Web: www.clenergy.com.au

